Skip to main content

Structural features that optimize high temperature superconductivity

  • Conference paper
  • First Online:
Recent Developments in High Temperature Superconductivity

Part of the book series: Lecture Notes in Physics ((LNP,volume 475))

Abstract

Studies of a large number of compounds have provided a consistent picture of what structural features give rise to the highest Tc’s in copper-oxide superconductors. For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO2 layers will lower Tc and eventually destroy superconductivity. After these requirements are satisfied, the highest Tc’s are observed for compounds (such as the HgBa2Can−1CunO2n+2+x family) that have flat and square CuO2 planes and long apical Cu−O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO2 plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex lines by shortening or “metallizing” the blocking layer; and (2) the formation of defects that pin flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, the articles in MRS Bulletin, Vol. 17, No. 8, (August 1992).

    Google Scholar 

    Google Scholar 

  2. J.D. Jorgensen, Physics Today, June 1991, p. 34.

    Google Scholar 

  3. M.H. Whangbo, D.B. Kang, and C.C. Torardi, Physica C. 158, 371 (1989).

    Article  ADS  Google Scholar 

  4. Y.J. Uemura, et al., Phys. Rev. Lett. 62, 2317 (1989).

    Article  ADS  Google Scholar 

  5. J.B. Torrance, Y. Tokura, A.I. Nazzal, A. Bezinge, T.C. Huang, and S.S. Parkin, Phys. Rev. Lett. 61 1127 (1988).

    Article  ADS  Google Scholar 

  6. J.L. Tallon, R.G. Buckley, E.M. Haines, M.R. Presland, A. Mawdsley, N.E. Fowler, and J. Loram, Physica C. 185–189, 855 (1991).

    Article  Google Scholar 

  7. M.-H. Whangbo and C.C. Torardi, Science. 249, 1143 (1990).

    Article  ADS  Google Scholar 

  8. J.D. Jorgensen, P. Lightfoot, and S. Pei, Supercond. Sci. Technol. 4, S11 (1991).

    Article  ADS  Google Scholar 

  9. J.D. Jorgensen, P.G. Radaelli, H. Shaked, J.L. Wagner, B.A. Hunter, J.F. Mitchell, R.L. Hitterman, and D.G. Hinks, J. Supercond. 7, 145 (1994).

    Article  ADS  Google Scholar 

  10. Y. Tokura, J.B. Torrance, T.C. Huang, and A.I. Nazzal, Phys. Rev. B. 38, 7156 (1988).

    Article  ADS  Google Scholar 

  11. P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, and J.D. Jorgensen, Phys. Rev. B. 49, 4163 (1994).

    Article  ADS  Google Scholar 

  12. J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, and J.D. Jorgensen, Phys. Rev. B., 51, 12911 (1995).

    Article  ADS  Google Scholar 

  13. Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi, Phys. Rev. Lett. 66, 2665 (1991).

    Article  ADS  Google Scholar 

  14. R.J. Cava, A.W. Hewat, E.A. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck Jr., and L.W. Rupp Jr., Physica C. 165, 419 (1990).

    Article  ADS  Google Scholar 

  15. J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, and W.K. Kwok, Phys. Rev. B. 41, 1863 (1990).

    Article  ADS  Google Scholar 

  16. J.L. Tallon and N.E. Fowler, Physica C. 204, 237 (1993).

    Article  ADS  Google Scholar 

  17. Y. Shimakawa, Y. Kubo, T. Manako, and H. Igarashi, Phys. Rev. B. 40, 11400 (1989).

    Article  ADS  Google Scholar 

  18. Y. Kubo, Y. Shimakawa, T. Manako, and H. Igarashi, Phys. Rev. B. 43 7875 (1991).

    Article  ADS  Google Scholar 

  19. H. Shaked, J.D. Jorgensen, B.A. Hunter, R.L. Hitterman, K. Kinoshita, K. Izumi, and T. Kamiyama, Phys. Rev. B. 48, 12941 (1993).

    Article  ADS  Google Scholar 

  20. Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature. 328 512 (1987).

    Article  ADS  Google Scholar 

  21. J.M. Tarascon, P. Barboux, P.F. Miceli, L.H. Greene, G.W. Hull, M. Eibschutz, and S.A. Sunshine, Phys. Rev. B. 37, 7458 (1988).

    Article  ADS  Google Scholar 

  22. R.S. Howland, T.H. Geballe, S.S. Laderman, A. Fischer-Colbrie, M. Scott, J.M. Tarascon, and P. Barboux, Phys. Rev. B. 39, 9017 (1989).

    Article  ADS  Google Scholar 

  23. J.B. Parise, P.L. Gai, M.K. Crawford, in High temperature superconductors: relationship between properties, structure and solid-state chemistry, Edited by J.D. Jorgensen, K. Kitazawa, J.M. Tarascon, M.S. Thompson, and J.B. Torrance

    Google Scholar 

  24. B.A. Hunter, J.D. Jorgensen, J.L. Wagner, P.G. Radaelli, D.G. Hinks, H. Shaked, R.L. Hitterman, and R.B.V. Dreele, Physica C. 221, 1 (1994).

    Article  ADS  Google Scholar 

  25. D.J. Singh and W.E. Pickett, Physica C. 233, 237 (1994).

    Article  ADS  Google Scholar 

  26. D.L. Novikov, O.N. Myrasov, and A.J. Freeman, Physica C. 222, 38 (1994).

    Article  ADS  Google Scholar 

  27. D.L. Novikov and A.J. Freeman, Physica C. 216, 273 (1993).

    Article  ADS  Google Scholar 

  28. D.L. Novikov and A.J. Freeman, Physica C. 212, 233 (1993).

    Article  ADS  Google Scholar 

  29. R.S. Markiewicz, Physica C. 217, 381 (1993).

    Article  ADS  Google Scholar 

  30. D.M. Newns, C.C. Tsuei, P.C. Pattnaik, and C.L. Kane, Comm. Condens. Matt. Phys. 15, 273 (1992).

    Google Scholar 

  31. D.J. Singh, Phys. Rev. B. 48, 3571 (1993).

    Article  ADS  Google Scholar 

  32. E.V. Antipov, J.J. Capponi, C. Chaillout, O. Chmaissem, S.M. Loureiro, M. Marezio, S.N. Putilin, A. Santoro, and J.L. Tholence, Physica C. 218, 348 (1993).

    Article  ADS  Google Scholar 

  33. M. Cantoni, A. Schilling, H.-U. Nissen, and H.R. Ott, Physica C. 215, 11 (1993).

    Article  ADS  Google Scholar 

  34. S.M. Loureiro, E.V. Antipov, J.L. Tholence, J.J. Capponi, O. Chmaissem, Q. Huang, and M. Marezio, Physica C. 217, 253 (1993).

    Article  ADS  Google Scholar 

  35. S.N. Putilin, E.V. Antipov., and M. Marezio, Physica C. 212, 266 (1993).

    Article  ADS  Google Scholar 

  36. D.J. Singh and W.E. Pickett, Phys. Rev. Lett. 73, 476 (1994).

    Article  ADS  Google Scholar 

  37. M. Itoh, A. Tokiwa-Yamamoto, S. Adachi, and H. Yamauchi, Physica C. 212, 271 (1993).

    Article  ADS  Google Scholar 

  38. S. Adachi, A. Tokiwa-Yamamoto, M. Itoh, K. Isawa, and H. Yamauchi, Physica C. 214, 313 (1993).

    Article  ADS  Google Scholar 

  39. A. Umezawa, W. Zhang, A. Gurevich, Y. Feng, E.E. Hellstrom, and D.C. Larbalestier, Nature. 364, 129 (1993).

    Article  ADS  Google Scholar 

  40. U. Welp, G.W. Crabtree, J.L. Wagner, D.G. Hinks, P.G. Radaelli, J.D. Jorgensen, J.F. Mitchell, and B. Dabrowski, Appl. Phys. Lett. 63, 693 (1993).

    Article  ADS  Google Scholar 

  41. U. Welp, G.W. Crabtree, J.L. Wagner, and D.G. Hinks, Physica C. 218, 373 (1993).

    Article  ADS  Google Scholar 

  42. J.A. Lewis, C.A. Platt, M. Weigmann, M. Teepe, J.L. Wagner, and D.H. Hinks Phys. Rev. B. 48, 7739 (1993).

    Article  ADS  Google Scholar 

  43. J. Shimoyama, S. Hahakura, R. Kobayashi, K. Kitazawa, K. Yamafuji, and K. Kishio, Physica C. 235–240, 2795 (1994).

    Article  Google Scholar 

  44. J. Shimoyama, S. Hahakura, K. Kitazawa, Y. Yamafuji, and K. Kishio, Physica C. 224, 1 (1994).

    Article  ADS  Google Scholar 

  45. J. Shimoyama, K. Kishio, S. Hahakura, K. Kitazawa, K. Yamaura, Z. Hiroi, and M. Takano, in Advances in Superconductivity VII, Proc. of the 7th International Symposium on Superconductivity (ISS’94) (Edited by K. Yamafuji and T. Morishita), Vol. p. 287. Springer-Verlag, Tokyo (1995).

    Google Scholar 

  46. K. Yamaura, J. Shimoyama, S. Hahakura, Z. Hiroi, M. Takano, and K. Kishio, Physica C., 246, 351 (1995).

    Article  ADS  Google Scholar 

  47. K.E. Gray and D.H. Kim, Physica C. 180, 139 (1991).

    Article  ADS  Google Scholar 

  48. K.E. Gray, Appl. Superconductivity, 2, 295 (1994).

    Article  Google Scholar 

  49. O. Chmaissem, D.N. Argyriou, D.G. Hinks, J.D. Jorgensen, B.G. Storey, H. Zhang, L.D. Marks, Y.Y. Wang, V.P. Dravid, and B. Dabrowski, Phys. Rev. B. 52, 15636 (1995).

    Article  ADS  Google Scholar 

  50. O. Chmaissem, J.D. Jorgensen, K. Yamaura, Z. Hiroi, M. Takano, J. Shimoyama, and K. Kishio, Phys. Rev. B. (in press) (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Klamut Boyd W. Veal Bogdan M. Dabrowski Piotr W. Klamut

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Jorgensen, J.D., Hinks, D.G., Chmaissem, O., Argyriou, D.N., Mitchell, J.F., Dabrowski, B. (1996). Structural features that optimize high temperature superconductivity. In: Klamut, J., Veal, B.W., Dabrowski, B.M., Klamut, P.W. (eds) Recent Developments in High Temperature Superconductivity. Lecture Notes in Physics, vol 475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102015

Download citation

  • DOI: https://doi.org/10.1007/BFb0102015

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61631-3

  • Online ISBN: 978-3-540-70695-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics