Microlocal analysis for inhomogeneous gevrey classes

  • Otto Liess
  • Luigi Rodino
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1324)


Pseudodifferential Operator Pseudo Differential Operator Principal Symbol Fourier Integral Operator Complex Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. Hörmander, On the existence and regularity of solutions of linear pseudo differential operators, L'Enseignement Math. 17 (1971), 99–163.zbMATHGoogle Scholar
  2. (2).
    O. Liess, Microlocality of the Cauchy problem in inhomogeneous Gevrey classes, Comm. Partial Differential Equations, to appear.Google Scholar
  3. (3).
    O. Liess-L. Rodino, Inhomogeneous Gevrey classes and related pseudo differential operators, Boll. Un. Mat. Ital., Ser. VI, 3-C (1984), 233–323.MathSciNetzbMATHGoogle Scholar
  4. (4).
    O. Liess-L. Rodino, Fourier integral operators and inhomogeneous Gevrey classes, Ann. Mat. Pura Appl., to appear.Google Scholar
  5. (5).
    L. Rodino, Microlocal analysis for spatially inhomogeneous pseudo differential operators, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 9 (1982), 211–253.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Otto Liess
    • 1
  • Luigi Rodino
    • 2
  1. 1.Institut für Angewandte MathematikUniversität BonnBonn 1Germany
  2. 2.Dipartimento di MatematicaUniversità di TorinoTorinoItaly

Personalised recommendations