Advertisement

Examples of non-discreteness for the interaction geometry of semilinear progressing waves in two space dimensions

  • Antônio Sà Barreto
  • Richard B. Melrose
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1324)

Abstract

The interaction geometry for the conic wave solutions of a semilinear wave equation with Cauchy data conormal at the three vertices and center of an equilateral triangle is analyzed. It is shown that there is a point of accumulation in a finite time. This illustrates a general conjecture on the occurrence of such non-discreteness in the interaction set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be]
    Beals, M., Nonlinear wave equations with data singular at one point, preprint.Google Scholar
  2. [BR]
    Beals, M. and M. Reed, Propagation of singularities for hyperbolic pseudodifferential operators with non-smooth coefficients, Comm. Pure Appl. Math. 35 (1982), 169–184.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Bo1]
    Bony, J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéares, Ann. Sci. Ec. Norm. Sup. 14 (1981), 209–246.MathSciNetzbMATHGoogle Scholar
  4. [Bo2]
    Bony, J.-M., Interaction des singularités pour les équations aux dérivées partielles non linéares, no. 22, Sem. Goulaouic Schwartz (1979–1980); no. 2, (1981–1982).Google Scholar
  5. [Bo3]
    Bony, J.-M., Second microlocalization and propagation of singularities for semi-linear hyperbolic equations, preprint.Google Scholar
  6. [Me1]
    Melrose, R.B., Conormal rings and semilinear progressing waves, in: Advances in Microlocal Analysis ed:H. G. Garnir, Reidel, 1986.Google Scholar
  7. [Me2]
    Melrose, R.B., Interaction of nonlinear progressing waves for semilinear wave equations III, in preparation.Google Scholar
  8. [MR1]
    Melrose, R.B. and N. Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. 121 (1985), 187–213.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [MR2]
    Melrose, R.B. and N. Ritter, Interaction of progressing waves for semilinear wave equations II, Math. Scand. to appear, Inst. Mittag-Leffler Report 1985, no. 7.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Antônio Sà Barreto
    • 1
  • Richard B. Melrose
    • 1
  1. 1.Massachusetts Institute of TechnologyUSA

Personalised recommendations