Advertisement

Critical points at infinity in the variational calculus

  • A. Bahri
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1324)

Keywords

Variational Problem Unstable Manifold Conjugate Point Coincidence Point Bisectional Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Marino, G. Prodi, Metodi pertubattive nella teoria di Morse, B.U.M.I. 4, 11 (1975).zbMATHGoogle Scholar
  2. [2]
    S. Smale, The Mathematics of time, Springer 1980.Google Scholar
  3. [3]
    C.C Conley, R.W. Easton, Isolated invariant sets and isolating blocks; (conf. on Qualitative theory of nonlinear differential and integral equations, Univ. of Wisconsin, Madison, 1978).CrossRefzbMATHGoogle Scholar
  4. [4]
    Morris W. Hirsch, Differential topology, Springer 1976.Google Scholar
  5. [5]
    A. Bahri, Pseudo-orbits of contact forms, preprint 1986.Google Scholar
  6. [6]
    A. Bahri, Un problème variationnel sans compacité en géométrie de contact, Note aux Comptes Rendus de l'Académie des Sciences, Paris, Juillet 1984.Google Scholar
  7. [7]
    D. Jerison, J. Lee, A subelliptic, non-linear eigenvalue problem and scalar curvature on CR manifolds, Microlocal Analysis, Amer. Math. Soc. Comtemporary Math. Series 27 (1984), 57–63.MathSciNetGoogle Scholar
  8. [8]
    S.S. Chern, R. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, MSRI, Berkeley, October 1984.zbMATHGoogle Scholar
  9. [9]
    J. Sacks, K. Uhlenbeck, Ann. Math. 113 (1981), 1–24.MathSciNetCrossRefGoogle Scholar
  10. [10]
    P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, Rev. Mat. Iberoamericana 1, 1 (1985), 145–201.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Y.T. Siu, S.T. Yau, Compact Kähler manifolds of positive bisectional curvature, Inv. Mathematicae 59 (1980), 189–204.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Brezis, J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rat. Mech. An. 89, 1 (1985), 21–56.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C.H. Taubes, Path connected Yang-Mills moduli spaces, J. Diff. Geom. 19 (1984), 337–392.MathSciNetzbMATHGoogle Scholar
  14. [14]
    A. Bahri, Critical points at infinity in some variational problems. to appear Pitman Research Notes in Mathematics, 1988.Google Scholar
  15. [15]
    A. Bahri, J.M. Coron, Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev, Note aux C.R. Acad. Sc. Paris, série I, t. 301 (1985).Google Scholar
  16. [16]
    A. Bahri, J.M. Coron, On a non linear elliptic equation involving the critical Sobolev exponent. Communications Pure and Applied Mathematics.Google Scholar
  17. [17]
    A. Bahri, J.M. Coron, Vers une théorie des points critiques à l'infini, Séminaire Bony-Sjöstrand-Meyer 1984–85, exposé no VIII.Google Scholar
  18. [18]
    M. Struwe, A global existence result for elliptic boundary value problems involving limiting nonlinearities, à paraître.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Bahri

There are no affiliations available

Personalised recommendations