Advertisement

On the centers of free central extensions of some groups

  • V. E. Shpilrain
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1456)

Keywords

Normal Subgroup Free Generator Lower Central Series Augmentation Ideal Integral Group Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Cossey, ‘On decomposable varieties of groups’, J. Austral. Math. Soc. 11 (1970), 340–342.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Narain Gupta, ‘Certain commutator subgroups of free groups’, Comm. Pure Appl. Math. 26 (1973), 699–702.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Narain Gupta and Frank Levin, ‘Generating groups of certain soluble varieties’, J. Austral. Math. Soc. 17 (1974), 222–233.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C.K. Gupta and N.D. Gupta, ‘Generalized Magnus embeddings and some applications’, Math. Z. 160 (1978), 75–87.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R.H. Fox, ‘Free differential calculus. I. Derivation in the free group ring’, Ann. Math. (2) 57 (1953), 547–560.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K.W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math. 143 (Springer-Verlag, Berlin, 1970).zbMATHGoogle Scholar
  7. [7]
    V.E. Shpilrain, ‘On the subgroups induced by certain ideals of a free group ring’, Vestnik Moskov. Univ. Ser. I. Mat. Mekh. (1989), no. 6, 60–63 (in Russian).Google Scholar
  8. [8]
    C.K. Gupta, ‘A faithful matrix representation for certain centre-by-metabelian groups’, J. Austral. Math. Soc. 10 (1969), 451–464.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Ralph Stöhr, ‘On torsion in free central extensions of some torsion-free groups’, J. Pure Appl. Algebra 46 (1987), 249–289.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C.K. Gupta, N.D. Gupta and F. Levin, ‘On dimension subgroups relative to certain product ideals’, in Group Theory, ed. by O.H. Kegel, F. Menegazzo, G. Zacher, Lecture Notes in Math. 1281, pp. 31–35 (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
  11. [11]
    Ralph Stöhr, ‘On Gupta representations of central extensions’, Math. Z. 187 (1984), 259–267.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Jacques Lewin, ‘Free modules over free algebras and free group algebras: the Schreier technique’, Trans. Amer. Math. Soc. 145 (1969), 455–465.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • V. E. Shpilrain
    • 1
  1. 1.Department of Mathematics and MechanicsMoscow State UniversityMOSCOWUSSR

Personalised recommendations