Advertisement

On the efficiency of some direct powers of groups

  • C. M. Campbell
  • E. F. Robertson
  • P. D. Williams
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1456)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.M. Campbell, T. Kawamata, I. Miyamoto, E. F. Robertson and P. D. Williams, ‘Deficiency zero presentations for certain perfect groups’, Proc. Roy. Soc. Edinburgh 103A (1986), 63–71.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C.M. Campbell, E.F. Robertson and P.D. Williams, ‘Efficient presentations of the groups PSL(2,p) × PSL(2,p), p prime’, J. London Math. Soc. (to appear).Google Scholar
  3. [3]
    D.L. Johnson and E.F. Robertson, ‘Finite groups of deficiency zero’, in Homological Group Theory, ed. by C.T.C. Wall, London Math. Soc. Lecture Note Ser 36, pp. 275–289 (Cambridge University Press, Cambridge, 1979).CrossRefGoogle Scholar
  4. [4]
    P.E. Kenne, ‘Presentations for some direct products of groups’, Bull. Austral. Math. Soc. 28 (1983), 131–133.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B.H. Neumann, ‘Some finite groups with few defining relations’, J. Austral. Math. Soc. Ser. A 38 (1985), 230–240.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    I. Schur, ‘Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen’, J. Reine Angew. Math. 132 (1907), 85–137.MathSciNetzbMATHGoogle Scholar
  7. [7]
    R.G. Swan, ‘Minimal resolutions for finite groups’, Topology 4 (1965), 193–208.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Wiegold, ‘The Schur multiplier: an elementary approach’, in Groups—St Andrews 1981, ed. by C.M. Campbell and E.F. Robertson, London Math. Soc. Lecture Note Ser. 71, pp. 137–154 (Cambridge University Press, Cambridge, 1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. M. Campbell
    • 1
  • E. F. Robertson
    • 2
  • P. D. Williams
    • 3
  1. 1.Mathematical InstituteUniversity of St AndrewsSt Andrews, FifeScotland
  2. 2.Mathematical InstituteUniversity of St AndrewsSt Andrews, FifeScotland
  3. 3.Department of MathematicsCalifornia State University San BernardinoSan BernardinoUSA

Personalised recommendations