Advertisement

Groups of prime-power order

  • M. F. Newman
Surveys
Part of the Lecture Notes in Mathematics book series (LNM, volume 1456)

Keywords

Maximal Class Nilpotency Class Isomorphism Type Elementary Abelian Group Lower Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Judith A. Ascione, George Havas and C.R. Leedham-Green (1977), ‘A computer aided classification of certain groups of prime power order’, Bull. Austral. Math. Soc. 17, 257–274. Corrigendum: 317–319. Microfiche supplement: 320.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Judith A. Ascione (1979), On 3-groups of second maximal class, Ph.D. thesis, Australian National University.Google Scholar
  3. G. Bagnera (1898), ‘La composizione dei Gruppi finiti il cui grado è la quinta potenza di un numero primo’, Ann. Mat. Pura Appl. (3) 1, 137–228.CrossRefGoogle Scholar
  4. N. Blackburn (1958), ‘On a special class of p-groups’, Acta. Math. 100, 45–92.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Geoffrey Blainey (1966), The tyranny of distance (Sun Books, Melbourne; also Macmillan, Melbourne, 1968).Google Scholar
  6. W. Burnside (1897), Theory of groups of finite order (Cambridge University Press).Google Scholar
  7. John J. Cannon (1984), ‘An introduction to the group theory language, Cayley’, in Computational Group Theory, Proceedings, Durham, 1982; ed. by Michael D. Atkinson, pp. 145–183 (Academic Press, London, New York).Google Scholar
  8. A. Cayley (1854), ‘On the theory of groups, as depending on the symbolic equation ϑn=1’, Philos. Mag. (4) 7, 40–47. Mathematical Papers, II, 123–130.Google Scholar
  9. A. Cayley (1859), ‘On the theory of groups, as depending on the symbolic equation ϑn=1. Part III’, Philos. Mag. (4) 18, 34–37. Mathematical Papers, IV, 88–91.Google Scholar
  10. A. Cayley (1878), ‘Desiderata and suggestions. No. 1. the theory of groups’, Amer. J. Math. 1, 50–52. Mathematical Papers, X, 401–403.MathSciNetCrossRefzbMATHGoogle Scholar
  11. J.-A. de Séguier (1904), Théorie des groupes finis. Éléments de la théorie des groupes abstraits (Gauthier-Villars, Paris).zbMATHGoogle Scholar
  12. Thomas E. Easterfield (1940), A classification of groups of order p 6, Ph.D. thesis, Cambridge University.Google Scholar
  13. Richard K. Guy (1988), ‘The strong law of small numbers’, Amer. Math. Monthly 95, 697–712.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Marshall Hall, Jr. and James K. Senior (1964), The Groups of Order 2n (n⩽6) (Macmillan, New York).zbMATHGoogle Scholar
  15. P. Hall (1933), ‘A contribution to the theory of groups of prime-power order’, Proc. London Math. Soc. 36 (1934), 29–95. Collected Works, 59–125.MathSciNetzbMATHGoogle Scholar
  16. P. Hall (1940), ‘The classification of prime-power groups’, J. Reine Angew. Math. 182, 130–141. Collected Works, 265–276.MathSciNetzbMATHGoogle Scholar
  17. Graham Higman (1960a), ‘Enumerating p-groups. I: Inequalities’, Proc. London Math. Soc. (3) 10, 24–30.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Graham Higman (1960b), ‘Enumerating p-groups. II: Problems whose solution is PORC’, Proc. London Math. Soc. (3) 10, 566–582.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Graham Higman (1960c), ‘Enumerating p-groups: III’. One of four lectures delivered as part of a group theory seminar at the University of Chicago in Autumn 1960.Google Scholar
  20. Otto Hölder (1893), ‘Die Gruppen der Ordnungen p 3, pq 2, pqr, p 4’, Math. Ann. 43, 301–412.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Rodney K. James (1968), The Groups of Order p 6 (p⩾3), Ph.D. thesis, University of Sydney.Google Scholar
  22. Rodney James (1975), ‘2-groups of almost maximal class’, J. Austral. Math. Soc. Ser. A 19, 343–357.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Rodney James (1980), ‘The groups of order p 6 (p an odd prime)’, Math. Comput. 34, 613–637.MathSciNetzbMATHGoogle Scholar
  24. Rodney James (1983), ‘2-groups of almost maximal class: corrigendum’, J. Austral. Math. Soc. Ser. A 35, 307.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Rodney James, M. F. Newman and E. A. O’Brien (1990), ‘The groups of order 128’, J. Algebra 129, 136–158.MathSciNetCrossRefzbMATHGoogle Scholar
  26. A. M. Küpper (1979), Enumeration of some two-generator groups of prime power order, M.Sc. thesis, Australian National University.Google Scholar
  27. C. R. Leedham-Green and Susan McKay (1976), ‘On p-groups of maximal class I’, Quart. J. Math. Oxford (2) 27, 297–311.MathSciNetCrossRefzbMATHGoogle Scholar
  28. C. R. Leedham-Green and Susan McKay (1978a), ‘On p-groups of maximal class II’, Quart. J. Math. Oxford (2) 29, 175–186.MathSciNetCrossRefzbMATHGoogle Scholar
  29. C. R. Leedham-Green and Susan McKay (1978b), ‘On p-groups of maximal class III’, Quart. J. Math. Oxford (2) 29, 281–299.MathSciNetCrossRefzbMATHGoogle Scholar
  30. C. R. Leedham-Green and Susan McKay (1984), ‘On the classification of p-groups of maximal class’, Quart. J. Math. Oxford (2) 35, 293–304.MathSciNetCrossRefzbMATHGoogle Scholar
  31. C. R. Leedham-Green and M. F. Newman (1980), ‘Space groups and groups of prime-power order I’, Arch. Math. (Basel) 35, 193–202.MathSciNetCrossRefzbMATHGoogle Scholar
  32. C. R. Leedham-Green and L. H. Soicher (1990), ‘Collection from the left and other strategies’, J. Symbolic Comput. (to appear).Google Scholar
  33. Ursula Martin (1986), ‘Almost all p-groups have automorphism group a p-group’, Bull. Amer. Math. Soc. (N.S.) 15, 78–82.MathSciNetCrossRefzbMATHGoogle Scholar
  34. John McKay (1969), ‘Table errata: The Groups of Order 2n (n⩽6), (Macmillan, New York, 1964) by M. Hall and J. K. Senior’, Math. Comput. 23, 691–692.MathSciNetCrossRefGoogle Scholar
  35. G. A. Miller (1896), ‘The regular substitution groups whose order is less than 48’, Quart. J. Math. 28, 232–284.zbMATHGoogle Scholar
  36. M. F. Newman (1977), ‘Determination of groups of prime-power order’, in Group Theory, Proceedings, Canberra, 1975; ed. by R. A. Bryce, J. Cossey and M. F. Newman; Lecture Notes in Math. 573, pp. 73–84 (Springer-Verlag, Berlin, Heidelberg, New York).CrossRefGoogle Scholar
  37. M. F. Newman and E. A. O’Brien (1989), ‘A CAYLEY library for the groups of order dividing 128’, in Group Theory, Proceedings of the Singapore Group Theory Conference held at the National University of Singapore, 1987, ed. by Kai Nah Cheng and Yu Kiang Leong, pp. 437–442 (de Gruyter, Berlin, New York).Google Scholar
  38. M. F. Newman and Mingyao Xu (1988), ‘Metacyclic groups of prime-power order’, Adv. in Math. (Beijing) 17, 106–107.Google Scholar
  39. E. A. O’Brien (1990), ‘The p-group generation algorithm’, J. Symbolic Comput. (to appear).Google Scholar
  40. E. A. O’Brien (1991), ‘The groups of order 256’, J. Algebra (to appear).Google Scholar
  41. O. S. Pilyavskaya (1983a), Classification of groups of order p 6 (p>3), VINITI Deposit No. 1877–83.Google Scholar
  42. O. S. Pilyavskaya (1983b), ‘Application of matrix problems to the classification of groups of order p 6, p>3’, in Linear algebra and the theory of representations, ed. by Yu. A. Mitropol’skii, pp. 86–99 (Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev).Google Scholar
  43. M. Potron (1904a), Les groupes d’ordre p 6, doctoral thesis (Gauthier-Villars, Paris).zbMATHGoogle Scholar
  44. M. Potron (1904b), ‘Sur quelques groupes d’ordre p 6’, Bull. Soc. Math. France 32, 296–300.MathSciNetzbMATHGoogle Scholar
  45. Martin Schönert (1989), ‘GAP, groups and programming’, Abstracts Amer. Math. Soc. 10, 34.Google Scholar
  46. Otto Schreier (1926), ‘Über die Erweiterung von Gruppen. II’, Abh. Math. Sem. Univ. Hamburg 4, 321–346.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Michio Suzuki (1986), Group Theory II, Grundlehren Math. Wiss. 248 (Springer-Verlag, Berlin, Heidelberg, New York).zbMATHGoogle Scholar
  48. Olga Taussky (1937), ‘A remark on the class field tower’, J. London Math. Soc. 12, 82–85.MathSciNetCrossRefzbMATHGoogle Scholar
  49. Louis William Tordella (1939), A classification of groups of order p 6, p an odd prime, Ph.D. thesis, University of Illinois, Urbana.Google Scholar
  50. Douglas Blaine Tyler (1982), Determination of groups of exponent p and order p 7, Ph.D. dissertation, University of California, Los Angeles.Google Scholar
  51. Michael Vaughan-Lee (1990), The restricted Burnside problem, London Math. Soc. Monographs 5 (Clarendon Press, Oxford).zbMATHGoogle Scholar
  52. J. W. A. Young (1893), ‘On the determination of groups whose order is a power of a prime’, Amer. J. Math. 15, 124–178.MathSciNetCrossRefzbMATHGoogle Scholar
  53. David Fredric Wilkinson (1983), An application of computers to groups of prime exponent, Ph.D. thesis, University of Warwick.Google Scholar
  54. David Wilkinson (1988), ‘The groups of exponent p and order p 7 (p any prime)’, J. Algebra 118, 109–119.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. F. Newman
    • 1
  1. 1.Mathematics IASAustralian National UniversityCanberraAustralia

Personalised recommendations