Iterative momentum relaxation for fast lattice-boltzmann simulations

  • D. Kandhai
  • A. Koponen
  • A. Hoekstra
  • P. M. A. Sloot
Track C2: Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)


Lattice-Boltzmann simulations are often used for studying steady-state hydrodynamics. In these simulations, however, the complete time evolution starting from some initial condition is redundantly computed due to the transient nature of the scheme. In this article we present a refinement of body-force driven lattice-Boltzmann simulations that may reduce the simulation time significantly. This new technique is based on an iterative adjustment of the local body-force and is validated on a realistic test case, namely fluid flow in a static mixer reactor.


Body Force Total Momentum Benchmark Application Simulate Fluid Flow Viscous Friction Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Benzi, S. Succi and M. Vergassola, The lattice-Boltzmann equation-theory and applications, Phys. Rep., 3, 145 (1992).CrossRefGoogle Scholar
  2. 2.
    S. Chen, Z. Wang, X. Shan and G. Doolen, Lattice-Boltzmann computational fluid dynamics in three dimensions, J. of Stat. Phys., 68, 379 (1992).CrossRefMathSciNetGoogle Scholar
  3. 3.
    D. H. Rothman and S. Zaleski, Lattice gas cellular automata, Cambridge University Press, (1997).Google Scholar
  4. 4.
    S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329 (1998).CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen and P.M.A. Sloot, Lattice-Boltzmann hydrodynamics on parallel systems, Comp. Phys. Commun., 111, 14 (1998).CrossRefGoogle Scholar
  6. 6.
    A. Koponen, D. Kandhai, E. Hellén, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot and J. Timonen, Permeability of three-dimensional random fiber webs, Phys. Rev. Lett., 80, 716 (1998).CrossRefGoogle Scholar
  7. 7.
    D.S. Clague, B.D. Kandhai, R. Zhang and P.M.A. Sloot, On the hydraulic permeability of (un)bounded fibrous media using the Lattice-Boltzmann method, Submitted.Google Scholar
  8. 8.
    J.A. Kaandorp, C. Lowe, D. Frenkel and P.M.A. Sloot, Effect of nutrient diffusion and flow on coral morphology, Phys. Rev. Lett., 77, 2328 (1996).CrossRefGoogle Scholar
  9. 9.
    D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema and P.M.A. Sloot, Lattice-Boltzmann and finite element simulations of fluid flow in a SMRX mixer, Int. J. Num. Meth. Fluids, accepted for publication.Google Scholar
  10. 10.
    G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate latticegas automata, Phys. Rev. Lett., 61, 2332 (1988).CrossRefGoogle Scholar
  11. 11.
    F.J. Higuera and J. Jemenez, Boltzmann approach to lattice gas simulations, Europhys. Lett. 7, 663 (1989).Google Scholar
  12. 12.
    F.J. Higuera, S. Succi and R. Benzi, Lattice gas-dynamics with enhanced collisions, Europhys. Lett., 9, 345 (1989).Google Scholar
  13. 13.
    Y.H. Qian, D. d'Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479 (1992).Google Scholar
  14. 14.
    A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. theoretical foundation, J. Fluid Mech. 271, 285 (1994); A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. numerical results, J. Fluid Mech. 271, 311 (1994).CrossRefMathSciNetGoogle Scholar
  15. 15.
    E.S. Mickaily-Huber, F. Bertrand, P. Tanguy, T. Meyer, Albert Renken, Franz S. Rys and Marc Wehrli, Numerical simulations of mixing in an SMRX static mixer, The Chem. Engl. J., 63, 117–126 (1996).Google Scholar
  16. 16.
    S. Chen, D. Martinez and R. Mei, On boundary conditions in lattice Boltzmann methods, Phys. Fluids, 8, 2527 (1996).CrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Kandhai, A. Koponen, A Hoekstra, M. Kataja, J. Timonen and P.M.A. Sloot, Implementation Aspects of 3D lattice-BGK: Boundaries, Accuracy and a Fast Relaxation Method, Submitted.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • D. Kandhai
    • 1
  • A. Koponen
    • 2
  • A. Hoekstra
    • 1
  • P. M. A. Sloot
    • 1
  1. 1.Department of Mathematics, Computer Science, Physics and AstronomyUniversity of AmsterdamAmsterdamNetherlands
  2. 2.Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations