Color recipe specification in the textile print shop using radial basis function networks

  • Rautenberg Sandro
  • Todesco José Leomar
Engeneering Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1607)


Color recipe specification in textile print shop requires a great deal of human experience. There is an intrinsic knowledge that makes the computing modeling a difficult task. One of the main issues is the human color perception. A small variation on the intenseness of colorants can lead to very different results. In this paper, we propose to use a Radial Basis Function Networks (RBFN) to color recipe specification in the textile print shop. The method has been applied on a real environment with the following results: it allowed the modeling of the intuitive nature of color perception; it made possible to simulate the color mixing process on a computer; and it became a suitable means for training on color recipe specification.


Textile print shop Color Recipe RBFN Artificial Neural Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Araújo, M., and Castro, E. M. M.; Manual de Engenharia Têxtil (Textile Engineering Manual), Fundação Calouste Gulbenkian, Lisboa, September 1984.Google Scholar
  2. [2]
    J. M. Bishop, M. J. Bushnell, and S. Westland, “Application of Neural Networks to Computer Recipe Prediction”. Color research and application, John Willey & Sons, New York, February 1991, pp. 3–9.Google Scholar
  3. [3]
    R. Hirschler, L.C.R. Almeida, and K.S. Araújo. “Formulação computadorizada de receitas de cores de tingimento e estamparia têxtil: como obter sucesso na indústria” “(Computerized color recipes in textile print shop: how to obtain success in industry”). Quíica Têxtil, Associação Brasileira de Químicos e Coloristas Têxteis, Barueri-São Paulo, September 1995, pp. 61–67.Google Scholar
  4. [4]
    Moody, J. & Darken, C.J., Fast learning in Networks of locally-tuned processing units, Neural Computation, vol. 1, 281–294, 1989.Google Scholar
  5. [5]
    R. Luo, P. Rhodes, J. Xin, and S. Scrivener. “Effective colour communication for industry”. JSDC, Society of Dyers and Colorist, Bradford, December 1992, pp. 516–520.Google Scholar
  6. [6]
    Haykin, Simon, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York, 1994MATHGoogle Scholar
  7. [7]
    Ribeiro, E.G., Como iniciar uma estamparia em silk-screem (how to open a textile print shop), CNI, Rio de Janeiro, 1987.Google Scholar
  8. [8]
    Welstead, S.T., Neural network and fuzzy logic applications in C/C++, John Willey & Sons, New York, 1994.Google Scholar
  9. [9]
    Farina, M., Psicodinâmica das cores em comunicação, (psycho-dynamics of colors in communication) Editora Edgard Blücher Ltda, São Paulo, 1990.Google Scholar
  10. [10]
    Vigo, T., Textile Processing and Properties-preparation, dyeing, finishing and performance, Elsevier, Amsterdam, 1994.Google Scholar
  11. [11]
    Billmeyer, F.W. Jr., and M. Saltzman, Principles of color technology, John Willey & Sons, New York, 1981.Google Scholar
  12. [12]
    Ingamells, W., Color for textiles, Society of Dyers and Colorist, Bradford, 1993.Google Scholar
  13. [13]
    M. R. Costa, “Princípios básicos da colorimetria”, (Basic Principles of Coloring) Química Têxtil, Associação Brasileira de Químicos e Coloristas Texteis, Barueri-São Paulo, June 1996, pp. 36–71.Google Scholar
  14. [14]
    Lammens, J.M.G., A computational model of color perception and color naming, Faculty of the Graduate School of State University of New York at Buffalo, New York, June 1994.Google Scholar
  15. [15]
    Abe, S., and Lan, M.-S., “A method for fuzzy rule extraction directly from numerical data and its application on pattern classification,” IEEE Trans. on Fuzzy Systems, vol. 3, no. 1, pp. 18–28, 1995.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Hush, Don R. & Horne, B. G., Progress in Supervised Neural Networks: What's New Since Lippmann?, IEEE Signal Processing Magazine, 8–39, January, 1993.Google Scholar
  17. [17]
    Lee, S. & Kil, R. M., A Gaussian Potential Function Network with hierachically Self-Organizing Learning, Neural Networks, vol. 4, 207–224, 1991.CrossRefGoogle Scholar
  18. [18]
    Wettschereck, D. & Dietterich, T., Improving the Performance of Radial Basis Function Networks by Learning Center Locations, Advances in Neural Information Processing System 4, J. E. Moody, S. J. Hansen and R. L. Lippmann editors, 1133–1140, 1992.Google Scholar
  19. [19]
    Saha, Avijit & Keeler, J. D., Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks, Advances in Neural Information Processing System 2, D. S. Touretzki editor, 482–489, 1990.Google Scholar
  20. [20]
    Ishibuchi, H.; Kwon, K.; and Tanaka, H., A learning algorithm of fuzzy neural networks with triangular fuzzy weights, Fuzzy Sets and Systems, vol. 71, pp. 277–293, 1995.CrossRefGoogle Scholar
  21. [21]
    Bonarini, A., Evolutionary Learning of Fuzzy Rules: Competition and Cooperation, in Fuzzy Modeling: Paradigms and Practice, Ed. By W. Pedrycz Kluwer Academic Press, 1996.Google Scholar
  22. [22]
    TODESCO, José L., Reconhecimento de padrões usando rede neuronal artificial com uma função de base radial: uma aplicação na classificação de cromossomos humanos. Florianópolis, 1995. Tese (Doutorado em Engenharia de Produção)-Engenharia de Produção e Sistemas, UFSC.Google Scholar
  23. [23]
    TONTINI, Gerson. Automatização da identificação de padrões em gráficos de controle estatistico de processos (CEP) através de redes neurais com lógica difusa. Florianópolis, 1995. Tese (Doutorado em Engenharia Mecânica)—Engenharia Mecânica, UFSC.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Rautenberg Sandro
    • 1
  • Todesco José Leomar
    • 1
  1. 1.Engenharia de Produção e SistemasUniversidade Federal de Santa Catarina-UFSCBrasil

Personalised recommendations