Keywords
- Meromorphic Function
- Zeta Function
- Class Group
- Isomorphism Class
- Number Field
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
N. BOURBAKI, Algèbre commutative, ch. 2.
N. BOURBAKI, Algèbre commutative, ch. 7, § 4, ex. 10.
D. A. BUELL, Class groups of quadratic fields, Math. Comp. 30 (1976), 610–623.
D. A. BUELL, The expectation of good luck in factoring integers-some statistics on quadratic class numbers, technical report no 83-006, Dept of Computer Science, Louisiana State University/Baton Rouge.
H. DAVENPORT, H. HEILBRONN, On the density of discriminants of cubic fields II, Proc. Royal Soc., A 322 (1971), 405–420.
M.-N. GRAS et G. GRAS, Nombre de classes des corps quadratiques réels \(\mathbb{Q}(\sqrt m )\), m<10 000, Institut de Math. Pures Grenoble (1971–72).
M.-N. GRAS, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de ℚ, J. reine und angew. Math. 277 (1975), 89–116.
P. HALL, A partition formula connected with Abelian groups, Comment. Math. Helv. 11 (1938–39), 126–129.
D. HEJHAL, The Selberg trace formula for PSL(2, IR) 1, Springer Lecture notes 548 (1976) and II, Springer Lecture notes 1 001 (1983).
I. KAPLANSKY, Commutative rings, Allyn and Bacon (1970), p. 146.
H. W. LENSTRA, Jr., On the calculation of regulators and class numbers of quadratic fields, pp 123–150 in: J. V. Armitage (ed.), Journées Arithmétiques 1980, London Math. Soc. Lecture notes series 56, Cambridge University Press (1982).
J.-P. SERRE, Corps locaux, Hermann (1966).
D. SHANKS, The infrastructure of real quadratic fields and its applications, proc. 1972 number theory conference, Boulder (1972).
D. SHANKS, H. WILLIAMS, in preparation.
G. TENENBAUM, Cours de théorie analytique des nombres, Bordeaux (1980).
M.-F. VIGNÉRAS, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL(2, ℤ), Astérisque 61 (1979), 235–249.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1984 Springer-Verlag
About this paper
Cite this paper
Cohen, H., Lenstra, H.W. (1984). Heuristics on class groups of number fields. In: Jager, H. (eds) Number Theory Noordwijkerhout 1983. Lecture Notes in Mathematics, vol 1068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099440
Download citation
DOI: https://doi.org/10.1007/BFb0099440
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13356-8
Online ISBN: 978-3-540-38906-4
eBook Packages: Springer Book Archive