Skip to main content

Heuristics on class groups of number fields

Part of the Lecture Notes in Mathematics book series (LNM,volume 1068)

Keywords

  • Meromorphic Function
  • Zeta Function
  • Class Group
  • Isomorphism Class
  • Number Field

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0099440
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38906-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. BOURBAKI, Algèbre commutative, ch. 2.

    Google Scholar 

  2. N. BOURBAKI, Algèbre commutative, ch. 7, § 4, ex. 10.

    Google Scholar 

  3. D. A. BUELL, Class groups of quadratic fields, Math. Comp. 30 (1976), 610–623.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. D. A. BUELL, The expectation of good luck in factoring integers-some statistics on quadratic class numbers, technical report no 83-006, Dept of Computer Science, Louisiana State University/Baton Rouge.

    Google Scholar 

  5. H. DAVENPORT, H. HEILBRONN, On the density of discriminants of cubic fields II, Proc. Royal Soc., A 322 (1971), 405–420.

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. M.-N. GRAS et G. GRAS, Nombre de classes des corps quadratiques réels \(\mathbb{Q}(\sqrt m )\), m<10 000, Institut de Math. Pures Grenoble (1971–72).

    Google Scholar 

  7. M.-N. GRAS, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de ℚ, J. reine und angew. Math. 277 (1975), 89–116.

    MathSciNet  Google Scholar 

  8. P. HALL, A partition formula connected with Abelian groups, Comment. Math. Helv. 11 (1938–39), 126–129.

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. D. HEJHAL, The Selberg trace formula for PSL(2, IR) 1, Springer Lecture notes 548 (1976) and II, Springer Lecture notes 1 001 (1983).

    Google Scholar 

  10. I. KAPLANSKY, Commutative rings, Allyn and Bacon (1970), p. 146.

    Google Scholar 

  11. H. W. LENSTRA, Jr., On the calculation of regulators and class numbers of quadratic fields, pp 123–150 in: J. V. Armitage (ed.), Journées Arithmétiques 1980, London Math. Soc. Lecture notes series 56, Cambridge University Press (1982).

    Google Scholar 

  12. J.-P. SERRE, Corps locaux, Hermann (1966).

    Google Scholar 

  13. D. SHANKS, The infrastructure of real quadratic fields and its applications, proc. 1972 number theory conference, Boulder (1972).

    Google Scholar 

  14. D. SHANKS, H. WILLIAMS, in preparation.

    Google Scholar 

  15. G. TENENBAUM, Cours de théorie analytique des nombres, Bordeaux (1980).

    Google Scholar 

  16. M.-F. VIGNÉRAS, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL(2, ℤ), Astérisque 61 (1979), 235–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Cohen, H., Lenstra, H.W. (1984). Heuristics on class groups of number fields. In: Jager, H. (eds) Number Theory Noordwijkerhout 1983. Lecture Notes in Mathematics, vol 1068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099440

Download citation

  • DOI: https://doi.org/10.1007/BFb0099440

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13356-8

  • Online ISBN: 978-3-540-38906-4

  • eBook Packages: Springer Book Archive