Advertisement

# Exchangeability and related topics

• David J. Aldous
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1117)

## "Positive", "increasing" are used in the weak sense

R

set of real numbers

ℤ; ℕ

set of all integers; set of natural numbers

#A

cardinality of set A

1A

indicator function/random variable: 1A(x)=1 for xεA=0 else

δa(·)

probability measure degenerate at a: δa(A)=1A(a)

F ⊂ G a.s.

for each G ε G there exists F ε F such that P(F Δ G)=0

F=G a.s.

F ⊂ G a.s. and G ⊂ F a.s.

F is trivial

F={φ,ω} a.s.

L(X)

distribution of random variable X

σ(X)

σ-field generated by X

Open image in new window

convergence in probability

Open image in new window

convergence in distribution

N(µ,σ2)

Normal distribution

U(0,1)

Uniform distribution on (0,1)

## Preview

Unable to display preview. Download preview PDF.

## References

1. Accardi, L. and Pistone, G. (1982). de Finetti's theorem, sufficiency, and Dobrushin's theory. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.), North-Holland, Amsterdam, 125–156.Google Scholar
2. Ahmad, R. (1982). On the structure and application of restricted exchangeability. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.), North-Holland, Amsterdam, 157–164.Google Scholar
3. Aldous, D. J. (1977). Limit theorems for subsequences of arbitrarily-dependent sequences of random variables. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 40, 59–82.
4. Aldous, D. J. (1978). Stopping times and tightness. Ann. Probability 6, 335–340.
5. Aldous, D. J. (1979). Symmetry and independence for arrays of random variables. Preprint.Google Scholar
6. Aldous, D. J. (1981a). Representations for partially exchangeable arrays of random variables. J. Multivariate Anal. 11, 581–598.
7. Aldous, D. J. (1981b). Subspaces of L1, via random measures. Trans. Amer. Math. Soc. 267, 445–463.
8. Aldous, D. J. (1982a). Partial exchangeability and Open image in new window-topologies. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 23–38.Google Scholar
9. Aldous, D. J. (1982b). On exchangeability and conditional independence. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 165–170.Google Scholar
10. Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems. Ann. Probability 6, 325–331.
11. Aldous, D. J. and Pitman, J. (1979). On the zero-one law for exchangeable events. Ann. Probability 7, 704–723.
12. Arnaud, J.-P. (1980). Fonctions sphériques et fonctions définies positives sur l'arbre homogène. C. R. Acad. Sci. A 290, 99–101.
13. Bailey, R., Praeger, C., Speed, T. P. and Taylor, D. (1984). Analysis of Variance. Springer-Verlag, to appear.Google Scholar
14. Barbour, A. D. and Eagleson, G. K. (1983). Poisson approximations for some statistics based on exchangeable trials. Adv. Appl. Prob. 15, 585–600.
15. Berbee, H. (1981). On covering single points by randomly ordered intervals. Ann. Probability 9, 520–528.
16. Berkes, I. and Péter, E. (1983). Exchangeable r.v.'s and the subsequence principle. Preprint, Math. Inst. Hungarian Acad. Sci.Google Scholar
17. Berkes, I. and Rosenthal, H. P. (1983). Almost exchangeable sequences of random variables. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete (to appear).Google Scholar
18. Berman, S. (1965). Sign-invariant random variables and stochastic processes with sign-invariant increments. Trans. Amer. Math. Soc. 119, 216–243.
19. Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
20. Blackwell, D. and Freedman, D. (1964). The tail σ-field of a Markov chain and a theorem of Orey. Ann. Math. Statist. 35, 1921–1925.
21. Blum, J. R. (1982). Exchangeability and quasi-exchangeability. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 171–176.Google Scholar
22. Blum, J., Chernoff, J., Rosenblatt, M., Teicher, H. (1958). Central limit theorems for interchangeable processes. Canad. J. Math. 10, 222–229.
23. Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
24. Brown, G. and Dooley, A. H. (1983). Ergodic measures are of weak product type. Preprint, School of Mathematics, University of New South Wales.Google Scholar
25. Brown, T. C. (1982). Poisson approximations and exchangeable random variables. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 177–184.Google Scholar
26. Bru, B., Heinich, H., Lootgitier, J.-C. (1981). Lois de grands nombres pour les variables échangeables. Comptes Rendus Acad. Sci. 293, 485–488.
27. Bühlmann, H. (1958). Le problème "limite centrale" pour les variables aléatoires échangeables. C. R. Acad. Sci. Paris 246, 534–536.
28. Bühlmann, H. (1960). Austauschbare stochastische Variabeln und ihre Grenzwertsätze. Univ. Calif. Publ. Statist. 3, 1–35.
29. Carnal, E. (1980). Indépendence conditionelle permutable. Ann. Inst. Henri Poincaré B 16, 39–47.
30. Cartier, P. (1973). Harmonic analysis on trees. In Harmonic Analysis on Homogenous Spaces. Amer. Math. Soc. (Proc. Sympos. Pure Math. 26). Providence.Google Scholar
31. Chatterji, S. D. (1974). A subsequence principle in probability theory. Bull. Amer. Math. Soc. 80, 495–497.
32. Choquet, G. (1969). Lectures on Analysis. Benjamin, Reading, Mass.
33. Chow, Y. S. and Teicher, H. (1978). Probability Theory. Springer-Verlag, New York.
34. Crisma, L. (1982). Quantitative analysis of exchangeability in alternative processes. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 207–216.Google Scholar
35. Csörgö, M. and Revesz, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York.
36. Daboni, L. (1982). Exchangeability and completely monotone functions. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 39–45.Google Scholar
37. Dacunha-Castelle, D. (1974). Indiscernability and exchangeability in Lp spaces. Seminar on Random Series, Convex Sets and Geometry of Banach Spaces. Aarhus.Google Scholar
38. Dacunha-Castelle, D. (1982). A survey of exchangeable random variables in normed spaces. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 47–60.Google Scholar
39. Dacunha-Castelle, D. and Schreiber, M. (1974). Techniques probabilistes pour l'étude de problèmes d'isomorphismes entre espaces de Banach. Annales Inst. Henri Poincaré 10, 229–277.
40. Davidson, R. (1974). Construction of line processes. In Stochastic Geometry (E. F. Harding and D. G. Kendall, eds.). Wiley, New York.Google Scholar
41. Dawid, A. P. (1977a). Invariant distributions and analysis of variance models. Biometrika 64, 291–297.
42. Dawid, A. P. (1977b). Spherical matrix distributions and a multivariate model. J. Roy. Statist. Soc. B 39, 254–261.
43. Dawid, A. P. (1978). Extendibility of spherical matrix distributions. J. Multivariate Anal. 8, 567–572.
44. Dawid, A. P. (1979). Conditional independence in statistical theory. J. Roy. Statist. Soc. B 41, 1–31.
45. Dawid, A. P. (1982). Intersubjective statistical models. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 217–232.Google Scholar
46. Dawson, D. A. and Hochberg, K. J. (1982). Wandering random measures in the Fleming-Viot model. Ann. Probability 10, 554–580.
47. Dellacherie, C. and Meyer, P.-A. (1975, 1980). Probabilités et Potentiel, Ch. I–IV; Ch. V–VIII. Herman, Paris.
48. Diaconis, P. (1977). Finite forms of de Finetti's theorem on exchangeability. Synthese 36, 271–281.
49. Diaconis, P. and Freedman, D. (1980a). Finite exchangeable sequences. Ann. Probability 8, 745–764.
50. Diaconis, P. and Freedman, D. (1980b). de Finetti's theorem for Markov chains. Ann. Probability 8, 115–130.
51. Diaconis, P. and Freedman, D. (1980c). de Finetti's generalizations of exchangeability. In Studies in Inductive Logic and Probability II (R. C. Jeffrey, ed.). University of California Press, Berkeley.Google Scholar
52. Diaconis, P. and Freedman, D. (1981). On the statistics of vision: the Julesz conjecture. J. Math. Psychol. 24, 112–138.
53. Diaconis, P. and Freedman, D. (1982). Partial exchangeability and sufficiency. Preprint, Department of Statistics, Stanford University (to appear in Sankhyā).Google Scholar
54. Diaconis, P. and Ylvisaker, Y. (1979). Conjugate priors for exponential families. Ann. Statist. 7, 269–281.
55. Dohler, R. (1980). On the conditional independence of random events. Theory Probability Appl. 25, 628–634.
56. Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
57. Dubins, L. E. (1982). Towards characterizing the set of ergodic probabilities. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 61–74.Google Scholar
58. Dubins, L. E. (1983). Some exchangeable probabilities which are singular with respect to all presentable probabilities. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 64, 1–6.
59. Dubins, L. E. and Freedman, D. (1979). Exchangeable processes need not be mixtures of independent identically distributed random variables. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 48, 115–132.
60. Dynkin, E. B. (1978). Sufficient statistics and extreme points. Ann. Probability 6, 705–730.
61. Eagleson, G. K. (1979). A Poisson limit theorem for weakly exchangeable events, J. Appl. Prob. 16, 794–802.
62. Eagleson, G. K. (1982). Weak limit theorems for exchangeable random variables. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 251–268.Google Scholar
63. Eagleson, G. K. and Weber, N. C. (1978). Limit theorems for weakly exchangeable arrays. Math. Proc. Cambridge Phil. Soc. 84, 123–130.
64. Eaton, M. (1981). On the projections of isotropic distributions. Ann. Statist. 9, 391–400.
65. Feller, W. (1971). An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York.
66. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230.
67. Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2, 615–629.
68. Figiel, T. and Sucheston, L. (1976). An application of Ramsey sets in analysis. Advances in Math. 20, 103–105.
69. de Finetti, B. (1937). La prevision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68.
70. de Finetti, B. (1938). Sur la condition d'equivalence partielle. Trans. in Studies in Inductive Logic and Probability II (R. C. Jeffrey, ed.). University of California Press, Berkeley.Google Scholar
71. de Finetti, B. (1972). Probability, Induction and Statistics. Wiley, New York.
72. de Finetti, B. (1974). Theory of Probability. Wiley, New York.
73. Freedman, D. (1962a). Mixtures of Markov processes. Ann. Math. Statist. 33, 114–118.
74. Freedman, D. (1962b). Invariants under mixing which generalize de Finetti's theorem. Ann. Math. Statist. 33, 916–923.
75. Freedman, D. (1963). Invariants under mixing which generalize de Finetti's theorem: continuous time parameter. Ann. Math. Statist. 34, 1194–1216.
76. Freedman, D. (1980). A mixture of independent identically distributed random variables need not admit a regular conditional probability given the exchangeable σ-field. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 51, 239–248.
77. Freedman, D. and Diaconis, P. (1982). de Finetti's theorem for symmetric location families. Ann. Statist. 10, 184–189.
78. Galambos, J. (1982). The role of exchangeability in the theory of order statistics. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 75–86.Google Scholar
79. Grigorenko, L. A. (1979). On the σ-algebra of symmetric events for a countable Markov chain. Theor. Probability Appl. 24, 199–204.
80. Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application, Academic Press, New York.
81. Heath, D. and Sudderth, W. (1976). de Finetti's theorem for exchangeable random variables. Amer. Statistician 30, 188–189.
82. Helland, I. S. (1982). Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9, 79–94.
83. Heller, A. (1965). On stochastic processes derived from Markov chains. Ann. Math. Statist. 36, 1286–1291.
84. Hewitt, E. and Savage, L. J. (1955) Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80, 470–501.
85. Hida, T. (1980). Brownian Motion. Springer-Verlag, New York.
86. Hoover, D. N. (1979). Relations on probability spaces and arrays of random variables. Preprint.Google Scholar
87. Hoover, D. N. (1982). Row-column exchangeability and a generalized model for exchangeability. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 281–291.Google Scholar
88. Horowitz, J. (1972). Semilinear Markov processes, subordinators and renewal theory. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 24, 167–193.
89. Hu, Y.-S. (1979). A note on exchangeable events. J. Appl. Prob. 16, 662–664.
90. Ignatov, Ts. (1982). On a constant arising in the theory of symmetric groups and on Poisson-Dirichlet measures. Theory Prob. Appl. 27, 136–147.
91. Isaac, R. (1977). Generalized Hewitt-Savage theorems for strictly stationary processes. Proc. Amer. Math. Soc. 63, 313–316.
92. Jaynes, E. (1983). Some applications and extensions of the de Finetti representation theorem. In Bayesian Inference and Decision Techniques (P. K. Goel and A. Zellnor, eds.). North-Holland, Amsterdam.Google Scholar
93. Johnson, N. L. and Kotz, S. (1977). Urn Models and their Applications. Wiley, New York.
94. Kallenberg, O. (1973). Canonical representations and convergence criteria for processes with interchangeable increments. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 27, 23–36.
95. Kallenberg, O. (1974). Path properties of processes with independent and interchangeable increments. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 28, 257–271.
96. Kallenberg, O. (1975). Infinitely divisible processes with interchangeable increments and random measures under convolution. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 32, 309–321.
97. Kallenberg, O. (1976). Random Measures. Akademie-Verlag, Berlin.
98. Kallenberg, O. (1976–81). On the structure of stationary flat processes, I–III. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 37, 157–174; 52, 127–147; 56, 239–253.
99. Kallenberg, O. (1982a). Characterizations and embedding properties in exchangeability. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 60, 249–281.
100. Kallenberg, O. (1982b). A dynamical approach to exchangeability. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 87–96.Google Scholar
101. Kallenberg, O. (1982c). The stationary-invariance problem. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 293–295.Google Scholar
102. Kallenberg, O. (1982d). Conditioning in point processes. Preprint, University of Göteborg.Google Scholar
103. Kallenberg, O. (1983). The local time intensity of an exchangeable interval partition. Preprint, University of Göteborg.Google Scholar
104. Kelly, F. P. (1979). Reversibility and Stochastic Networks. Wiley, New York.
105. Kemperman, J. H. B. (1973). Moment problems for sampling without replacement I. Indagationes Math. 35, 149–164.
106. Kendall, D. G. (1967). On finite and infinite sequences of exchangeable events. Studia Scient. Math. Hung. 2, 319–327.
107. Kerov, S. V. and Vershik, A. M. (1982). Characters of infinite symmetric groups and probability properties of Robinson-Shenstead-Knuth's algorithm. Preprint.Google Scholar
108. Kimberling, C. H. (1973). Exchangeable events and completely monotonic sequences. Rocky Mtn. J. 3, 565–574.
109. Kindermann, R. and Snell, J. L. (1980). Markov Random Fields and their Applications. American Math. Soc., Providence.
110. Kingman, J. F. C. (1978a). Uses of exchangeability. Ann. Probability 6, 183–197.
111. Kingman, J. F. C. (1978b). The representation of partition structures. J. Lond. Math. Soc. 18, 374–380.
112. Kingman, J. F. C. (1978c). Random partitions in population genetics. Proc. Roy. Soc. 361, 1–20.
113. Kingman, J. F. C. (1980). Mathematics of Genetic Diversity. SIAM, Philadelphia.
114. Kingman, J. F. C. (1982a). Exchangeability and the evolution of large populations. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 97–112.Google Scholar
115. Kingman, J. F. C. (1982b). The coalescent. Stochastic Processes Appl. 13, 235–248.
116. Knuth, D. E. (1981). The Art of Computer Programming, Vol. 2, 2nd Ed. Addison-Wesley, Reading, Mass.
117. Kolchin, V. F. and Sevast'yanov, B. A. (1978). Random Allocations. Winston, New York.
118. Komlós, J. (1967). A generalisation of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18, 217–229.
119. Lauritzen, S. L. (1982). Statistical Models as Extremal Families. Aalborg University Press.Google Scholar
120. Letac, G. (1981a). Isotropy and sphericity: some characterizations of the normal distribution. Ann. Statist. 9, 408–417.
121. Letac, G. (1981b). Problèmes classiques de Probabilité sur un couple de Gelfand. In Analytic Methods in Probability Theory (D. Dugué et al., eds.). Springer Lecture Notes in Mathematics 861, New York.Google Scholar
122. Loève, M. (1960). Probability Theory. Van Nostrand, Princeton.
123. Lynch, J. (1982a). On a representation for row-column-exchangeable arrays. Technical Report 82, Department of Mathematics, University of South Carolina.Google Scholar
124. Lynch, J. (1982b). Canonical row-column-exchangeable arrays. Technical Report 84, Department of Mathematics, University of South Carolina.Google Scholar
125. Maitra, A. (1977). Integral representations of invariant measures. Trans. Amer. Math. Soc. 229, 209–225.
126. Mandelbaum, A. and Taqqu, M. S. (1983). Invariance principle for symmetric statistics. Preprint, Operations Research, Cornell University.Google Scholar
127. Mansour, B. (1981). Le cube comme couple de Gelfand. Thesis, University of Toulouse.Google Scholar
128. Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and its Application. Academic Press, New York.
129. Milgrom, P. R. and Weber, R. J. (1983). Exchangeable affiliated random variables. Preprint.Google Scholar
130. Moran, P. A. P. (1973). A central limit theorem for exchangeable variates with geometrical applications. J. Appl. Prob. 10, 837–846.
131. O'Brien, G. L. and Vervaat, W. (1983). Self-similar processes with stationary increments generated by point processes. Preprint.Google Scholar
132. Olshen, R. A. (1971). The coincidence of measure algebras under an exchangeable probability. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 18, 153–158.
133. Olshen, R. A. (1973). A note on exchangeable sequences. Zeitschrift fur Wahrscheinlichkeitstheorie verw. Gebiete 28, 317–321.
134. Ornstein, D. S. (1973). An application of ergodic theory to probability theory. Ann. Probability 1, 43–65.
135. Palacios, J. (1982). The exchangeable σ-field of Markov chains. Ph. D. thesis, University of California, Berkeley.Google Scholar
136. Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.
137. Pavlov, Y. L. (1981). Limit theorem for a characteristic of a random mapping. Theory Prob. Appl. 26, 829–834.
138. Pfeiffer, P. E. (1979). Conditional Independence in Applied Probability. UMAP, Educational Development Center, Newton, Mass.
139. Phelps, R. R. (1966). Lectures on Choquet's Theorem. Van Nostrand, Princeton.
140. Pitman, J. (1978). An extension of de Finetti's theorem. Adv. Appl. Prob. 10, 268–270.
141. Pittel, B. (1983). On the distributions related to transitive classes of random finite mappings. Ann. Probability 11, 428–441.
142. Quine, M. P. (1978). A functional central limit theorem for a class of exchangeable sequences. Preprint, University of Sydney.Google Scholar
143. Quine, M. P. (1979). A functional central limit theorem for a generalized occupancy problem. Stochastic Proc. Appl. 9, 109–115.
144. Rényi, A. (1963). On stable sequences of events. Sankhyā Ser. A 25, 293–302.
145. Rényi, A. and Révész, P. (1963). A study of sequences of equivalent events as special stable sequences. Publ. Math. Debrecen. 10, 319–325.
146. Ressel, P. (1983). de Finetti type thorems: an analytical approach. Preprint, Department of Statistics, Stanford University.Google Scholar
147. Ridler-Rowe, C. J. (1967). On two problems on exchangeable events. Studia Sci. Math. Hungar. 2, 415–418.
148. Ryll-Nardzewski, C. (1957). On stationary sequences of random variables and the de Finetti's equivalence. Colloquium Math. 4, 149–156.
149. Saunders, R. (1976). On joint exchangeability and conservative processes with stochastic rates. J. Appl. Prob. 13, 584–590.
150. Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44, 522–536.
151. Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
152. Shaked, M. and Tong, Y. L. (1983). Some partial orderings of exchangeable random variables by positive dependence. Preprint, Mathematics Department, University of Arizona.Google Scholar
153. Shields, P. C. (1979). Stationary coding of processes. IEEE Trans. Information Theory 25, 283–291.
154. Sigalotti, L. (1982). On particular renewal processes interesting reliability theory. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 303–311.Google Scholar
155. Slud, E. V. (1978). A note on exchangeable sequences of events. Rocky Mtn. J. 8, 439–442.
156. Smith, A. M. F. (1981). On random sequences with centered spherical symmetry. J. Roy. Statist. Soc. Ser. B 43, 208–209.
157. Speed, T. P. (1982). Cumulants, k-statistics and their generalisations. Preprint, University of Western Australia.Google Scholar
158. Spitzer, F. (1975). Markov random fields on an infinite tree. Ann. Probability 3, 387–398.
159. Spizzichino, F. (1982). Extendibility of symmetric probability distributions and related bounds. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 313–320.Google Scholar
160. Stein, C. (1983). Approximate computation of expectations. Unpublished lecture notes.Google Scholar
161. Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423–439.
162. Surabian, C. G. (1979). A survey of exchangeability. M.Sc. thesis, Tufts University.Google Scholar
163. Taqqu, M. S. (1982). Self-similar processes and related ultraviolet and infrared catastrophes. In Random Fields (J. Fritz, ed.). North-Holland, Amsterdam.Google Scholar
164. Teicher, H. (1982). Renewal theory for interchangeable random variables. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.). North-Holland, Amsterdam, 113–121.Google Scholar
165. Troutman, B. M. (1983). Weak convergence of the adjusted range of cumulative sums of exchangeable random variables. J. Appl. Prob. 20, 297–304.
166. Vershik, A. M. and Schmidt, A. A. (1977). Limite measures arising in the theory of symmetric groups I. Theory Prob. Appl. 22, 70–85.
167. Watterson, G. A. (1976). The stationary distribution of the infinite-many neutral alleles diffusion model. J. Appl. Prob. 13, 639–651.
168. Weber, N. C. (1980). A martingale approach to central limit theorems for exchangeable random variables. J. Appl. Prob. 17, 662–673.
169. Zabell, S. L. (1982). W. E. Johnson's "sufficientness" postulate. Ann. Statist. 10, 1091–1099.
170. Zachary, S. (1983). Countable state space Markov random fields and Markov chains on trees. Ann. Probability. to appear.Google Scholar

## Copyright information

© Springer-Verlag 1985

## Authors and Affiliations

• David J. Aldous

There are no affiliations available