Advertisement

On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres

  • L. Siebenmann
Differential And Geometric Topology
Part of the Lecture Notes in Mathematics book series (LNM, volume 788)

Keywords

Boundary Component Finite Order Infinite Order Lens Space Weighted Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bi]
    J.S. BIRMAN, Orientation-reversing involutions on 3-manifolds, preprint, Columbia Univ., 1979.Google Scholar
  2. [BoS1]
    F. BONAHON and L. SIEBENMANN, Equivariant characteristic varieties in dimension 3, (to appear).Google Scholar
  3. [BoS2]
    [BoS2] F. BONAHON and L. SIEBENMANN, Les noeuds algébriques (à paraitre), see also proceedings of July 1979 topology conference, Bangor N. Wales, LMS lecture notes, to appear.Google Scholar
  4. [Br]
    G. BREDON, Introduction to compact transformation groups, Academic Press, 1972.Google Scholar
  5. [Cau]
    A. CAUDRON, L'arborescence dans la classification des noeuds et des enlacements, polycopié ENSET Tunis 1979.Google Scholar
  6. [CauS]
    A. CAUDRON et L. SIEBENMANN, La description des noeuds algébriques par les arbres pondérésGoogle Scholar
  7. [Co1]
    J. CONWAY, An enumeration of knots and links, and some of their related properties, pages 329–358 in Computational Problems in Abstract Algebra, ed. J. Leech Pergamon Press, 1970.Google Scholar
  8. [Co2]
    J. CONWAY, Skein theory (to appear).Google Scholar
  9. [Cont]
    L. CONTRERAS-CABALLERO, Periodic transformations in homology 3-spheres and the Rohlin invariant, preprint, Cambridge Univ., 1979, to appear in Proc. London Math. Soc., cf. Bangor 1979 conference, LMS lecture notes, to appear.Google Scholar
  10. [Coo]
    D. COOPER, manuscript, Warwick University.Google Scholar
  11. [EK]
    J. EELLS and N. KUIPER, An invariant for smooth manifolds, Ann. of Math. Pura Appl., 60 (1962), 93–110.MathSciNetCrossRefGoogle Scholar
  12. [Feu]
    C.D. FEUSTEL, On the torus theorem, Trans. AMS 217 (1976), 1–57.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [GaS1]
    D. GALEWSKI and R. STERN, Classification of simplicial triangulations of topological manifolds (to appear).Google Scholar
  14. [GaS2]
    D. GALEWSKI and R. STERN, Orientation-reversing involutions on homology 3-spheres, Math. Proc. Camb. Phil. Soc. 1979.Google Scholar
  15. [Go]
    C. GORDON, Some aspects of classical knot theory, pages 1–60, in Knot Theory, Springer Lecture Notes in Math. No 685 (1978).Google Scholar
  16. [He]
    J. HEMPEL, 3-manifolds, Ann. of Math. Study 86 (1976), Princeton Univ. Press.Google Scholar
  17. [HNK]
    F. HIRZEBRUCH, W. NEUMANN and S. KOH, Differentiable manifolds and quadratic forms, Dekker, math. lecture notes, vol. 4, 1972.Google Scholar
  18. [HsP]
    W.C. HSIANG and P.S. PAO, Orientation reversing involutions on homology 3-spheres, see Notices Amer. Math. Soc. 26 (Feb 1979), page A-251.Google Scholar
  19. [JaS]
    W. JACO and P. SHALEN, Seifert fibered spaces in 3-manifolds, I; the mapping theorem, to appear, Memoirs AMS, 1979.Google Scholar
  20. [Jo1]
    K. JOHANNSON, Homotopy equivalences of knot spaces, preprint (U. of Bielefeld) 1975. Cf. Springer lecture Notes, 1979.Google Scholar
  21. [Jo2]
    K. JOHANNSON, On the mapping class group of sufficiently large 3-manifolds, preprint (U. of Bielefeld) 1978.Google Scholar
  22. [Ka]
    A. KAWAUCHI, Vanishing of the Rohlin invariants of some Z2-homology 3-spheres, preprint, IAS, Princeton and Osaka city U., 1979. Cf. Bangor 1979 conference, LMS lecture notes, to appear.Google Scholar
  23. [Lan]
    J. LANNES, Un faux espace projectif réel de dimension 4 (d'après Cappell et Shaneson). Sém. Bourbaki, 1978/79, exposé 527, Nov. 1978.Google Scholar
  24. [Lau]
    F. LAUDENBACH, Dimension 3 homotopie et isotopie, Astérisque 12, 1974.Google Scholar
  25. [Mas]
    W.S. MASSEY, Algebraic topology, Harcourt Brace and World, 1967.Google Scholar
  26. [Matu]
    T. MATUMOTO, Triangulation of manifolds, Proc. Sympos. Pure Math. 32 (1978), Part II, pages 3–7.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Mi]
    J. MILNOR, Infinite cyclic coverings, pages 115–133 in Topology of Manifolds, ed. J. Hocking, Prindle, Weber & Schmidt, 1968.Google Scholar
  28. [Mo1]
    J. MONTESINOS, Variedades de Seifert que son recubridores ciclicos ramificados de dos hojas, Bol. Soc. Mat. Mexicana 18 (1973), 1–32.MathSciNetGoogle Scholar
  29. [Mo2]
    J. MONTESINOS, Revetements doubles ramifiés de noeuds, variétés de Seifert et diagrammes de Heegard, (conférences 1976, polycopiés à Orsay, 1979) à paraître dans un volume d'Astérisque.Google Scholar
  30. [Mo3]
    J. MONTESINOS, 4-manifolds, 3-fold covering spaces and ribbons, preprint, 1977.Google Scholar
  31. [Mos]
    G.D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Study 78 (1976), Princeton U. Press.Google Scholar
  32. [Ne1]
    W. NEUMANN, An invariant of plumbed manifolds, Notices Amer. Math. Soc. 25 (Nov. 1978),page A-717, and these proceedings.Google Scholar
  33. [NeW]
    W. NEUMANN and S. WEINTRAUB, Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), 71–78.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [OVZ]
    P. ORLIK, E. VOGT and H. ZIESCHANG, Zur topologie gefaserter dreidimensionaler Manigfaltigkeiten, Topologie 6 (1967), 49–64.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [Or]
    P. ORLIK, Seifert fiber spaces, Springer Lecture Notes Math. 291 (1972).Google Scholar
  36. [RaT]
    F. RAYMOND and J. TOLLEFSON, Closed 3-manifolds which admit no periodic maps, Trans. Amer. Math. Soc. 221 (1976)Google Scholar
  37. [Roh]
    V. ROHLIN, A new result in the theory of 4-dimensional manifolds, Doklady 8 (1952), 221–224.MathSciNetGoogle Scholar
  38. [Ro1]
    D. ROLFSEN, Knots and Links, Publishor Perish Inc, No 7 (1976), Box 7108, Berkeley CA 94707.Google Scholar
  39. [Sc]
    P. SCOTT, A new proof of the annulus and torus theorems, preprint, Univ. of Liverpool, 1978.Google Scholar
  40. [Sei1]
    H. SEIFERT, Topologie der dreidimensionalen gefaserten Räume, Acta Math. 60 (1933), 147–328.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [Sei2]
    H. SEIFERT, Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571–592.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [Si1]
    L. SIEBENMANN, Exercices sur les noeuds rationnels, polycopié Orsay, 1975.Google Scholar
  43. [Si2]
    L. SIEBENMANN, Introduction aux espaces fibrés de Seifert, Orsay 1977–78.Google Scholar
  44. [SiV]
    L. SIEBENMANN and J. VAN-BUSKIRK, Construction of homology 3-spheres with orientation reversing involution, polycopied, Eugene, Oregon, 1979.Google Scholar
  45. [Th]
    W. THURSTON, The Geometry and Topology of 3-Manifolds, preprints 1978-, Princeton U.Google Scholar
  46. [Wa1]
    F. WALDHAUSEN, Eine Klasse von 3-dimensionalen Manigfaltigkeiten, Invent. Math. 3 (1967), 308–333, and 4 (1967), 87–117.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [Wa2]
    F. WALDHAUSEN, On irreducible 3-manifolds that are sufficiently large, Ann. of Math. 87 (1968), 56–88.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [Wa3]
    F. WALDHAUSEN, Gruppen mit Zentrum, und 3-dimensionale Manigfaltigkeiten, Topology 6 (1967), 505–517.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [ZCV]
    H. ZIESCHANG, E. VOGT, H.-D. COLDEWEY, Flächen und ebene discontinuierlichen Gruppen, Springer Lecture Notes Math. 122 (1970).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • L. Siebenmann
    • 1
  1. 1.Math.OrsayFrance

Personalised recommendations