Advertisement

Semilinear evolution equations in Fréchet spaces

  • Shinnosuke Oharu
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1223)

Keywords

Mild Solution Parabolic System Continuous Semigroup Infinitesimal Generator Frechet Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. B. Cooper, Saks Spaces and Applications to Functional Analysis, Mathematics Studies 28, North-Holland, 1978.Google Scholar
  2. [2]
    M. Crandall, A. Pazy and L. Tartar, Remarks on generators of analytic semigroups, Israel J. Math., 32 (4) (1979), 365–374.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974.Google Scholar
  4. [4]
    H. G. Garnir, M. De Wilde and J. Schmets, Analyse Fonctionnelle, T. II, Measure et intégration dans l'espace euclidien, Birkhäuser Verlag, Basel, 1972.zbMATHGoogle Scholar
  5. [5]
    K. Hashimoto and S. Oharu, Integration in Fréchet lattices with applications to operator semigroups, to appear.Google Scholar
  6. [6]
    K. Hashimoto, T. Kusano and S. Oharu, Semilinear evolution equations in Fréchet lattices, to appear.Google Scholar
  7. [7]
    N. Kawano and T. Kusano, On positive entire solutions of a class of second order semilinear elliptic systems, Math. Z., 186 (1984), 287–297.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. Kusano and S. Oharu, Semilinear evolution equations in Fréchet lattices with applications to parabolic systems, to appear.Google Scholar
  9. [9]
    T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem, Indiana Univ. Math. J., 34 (1985), 85–95.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, 1983.Google Scholar
  11. [11]
    T. Takahashi and S. Oharu, Approximation of operator semigroups in a Banach space, Tôhoku Math. J., 24 (4) (1972), 505–528.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Yosida, Functional Analysis (6th edition), Springer-Verlag, New York, 1980.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Shinnosuke Oharu
    • 1
  1. 1.Department of MathematicsHiroshima UniversityHiroshimaJapan

Personalised recommendations