Advertisement

Self-organizing cases to find paradigms

  • Juan José del Coz
  • Oscar Luaces
  • José Ramón Quevedo
  • Jaime Alonso
  • José Ranilla
  • Antonio Bahamonde
Plasticity Phenomena (Maturing, Learning & Memory)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1606)

Abstract

Case-based information systems can be seen as lazy machine learning algorithms; they select a number of training instances and then classify unseen cases as the most similar stored instance. One of the main disadvantages of these systems is the high number of patterns retained. In this paper, a new method for extracting just a small set of paradigms from a set of training examples is presented. Additionally, we provide the set of attributes describing the representative examples that are relevant for classification purposes. Our algorithm computes the Kohonen self-organizing maps attached to the training set to then compute the coverage of each map node. Finally, a heuristic procedure selects both the paradigms and the dimensions (or attributes) to be considered when measuring similarity in future classification tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aha, D. W.: A Study of Instance-based Algorithms for Supervised Learning Tasks: Mathematical, Empirical and Psychological Evaluations. Ph. D. Dissertation, University of California at Irvine (1990).Google Scholar
  2. 2.
    Bahamonde, A., De La Cal, E. A., Ranilla, J., & Alonso, J.: Self-organizing symbolic learned rules. In: Mira, J., Moreno-Díaz, R., Cabestany (eds): Biological and Artificial Computation: From Neuroscience to Technology. Lecture Notes in Computer Science, Vol. 1240. Springer-Verlag, Berlin Heidelberg, New York (1997) 536–545CrossRefGoogle Scholar
  3. 3.
    Blake, C., Keogh, E. & Merz, C.J.: UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.htmlurl] Irvine, CA: University of California, Department of Information and Computer Science (1998)Google Scholar
  4. 4.
    Clark, P., & Niblett, T.: The CN2 Induction Algorithm. Machine Learning, 3 (1988) 261–284Google Scholar
  5. 5.
    Cover, T. M., & Hart, P. E.: Nearest Neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), (1967) 21–27CrossRefMATHGoogle Scholar
  6. 6.
    Fisher, R.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 1, (1936), 179–188CrossRefGoogle Scholar
  7. 7.
    Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11 (1993) 63–91CrossRefMATHGoogle Scholar
  8. 8.
    Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K.: MLC++: A machine learning library in C++. In: Proceedings of the Sixth International Conference on Tools with Artificial Intelligence. IEEE Computer Society Press (1994) 740–743Google Scholar
  9. 9.
    Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin Heidelberg New York (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Luaces, O., Alonso, J., De La Cal, E. A., Ranilla, J., & Bahamonde, A.: Machine Learning usefulness relies on accuracy and self-maintenance. In: Pobil, A.P., Mira, J., Ali, M. (eds.): Tasks and Methods in Applied Artificial Intelligence. Lecture Notes in Artificial Intelligence, Vol. 1416. Springer-Verlag, Berlin Heidelberg New York (1998) 448–457CrossRefGoogle Scholar
  11. 11.
    Murthy, S. K., Kasif, S., & Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, 2 (1994) 1–32MATHGoogle Scholar
  12. 12.
    Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA (1993)Google Scholar
  13. 13.
    Ranilla, J., Mones, R., & Bahamonde, A.: El Nivel de Impureza de una regla de clasificación aprendida a partir de ejemplos. Rev. Iberoamer. de Inteligencia Artificial, 4 (1998) 4–11Google Scholar
  14. 14.
    Ranilla, J., & Bahamonde, A.: Fan: Finding Accurate iNductions. Technical Report, Artificial Intelligence Center, University of Oviedo at Gijón. November (1998) [ftp://ftp.aic.uniovi.es/publications/Machine_Learning/FANprn.ZIP]Google Scholar
  15. 15.
    Salzberg, S.: Learning with nested generalized exemplars. Kluwer, Boston, MA (1990)CrossRefMATHGoogle Scholar
  16. 16.
    Skalak, D. B.: Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms. In: Cohen, W., Hirsch, H. (eds.): Machine Learning. Proceedings of the Eleventh International Conference. Rutgers University, New Brunswick, New Jersey (1994) 293–301Google Scholar
  17. 17.
    Smyth, B.: Case-Based Maintenance. In: Pobil, A.P., Mira, J., Ali, M. (eds.): Tasks and Methods in Applied Artificial Intelligence. Lecture Notes in Artificial Intelligence, Vol. 1416. Springer-Verlag, Berlin Heidelberg New York (1998) 507–516CrossRefGoogle Scholar
  18. 18.
    Spiegel, M. R. (1970). Estadística. McGraw-Hill, Atlacomulco, México (1970)Google Scholar
  19. 19.
    Wettschereck, D., Aha, D. W., & Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11 (1997) 273–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Juan José del Coz
    • 1
  • Oscar Luaces
    • 1
  • José Ramón Quevedo
    • 1
  • Jaime Alonso
    • 1
  • José Ranilla
    • 1
  • Antonio Bahamonde
    • 1
  1. 1.Centro de Inteligencia ArtificialUniversidad de Oviedo at GijónGijónEspaña

Personalised recommendations