Skip to main content

Estimating exact form of generalisation errors

  • Plasticity Phenomena (Maturing, Learning & Memory)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

  • 514 Accesses

Abstract

A novel approach to estimate generalisation errors of the simple perceptron of the worst case is introduced. It is well known that the generalisation error of the simple perceptron is of the form d/t with an unknown constant d which depends only on the dimension of inputs, where t is the number of learned examples. Based upon extreme value theory in statistics we obtain an exact form of the generalisation error of the simple perceptron. The method introduced in this paper opens up new possibilities to consider generalisation errors of a class of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S., Feng, J., and Qian, M. (1995), The role of noises in neural networks, Phys. Rev. E., 52, 6593–6606.

    Article  MathSciNet  Google Scholar 

  2. Amari, S., Murata, N., and Ikeda, K. (1995), Statistical theory of learning curves, in: Oh, J., Kwon, Ch., and Chao, S. (eds), Neural Networks: The Statistical Mechanics Perspective, 3–17.

    Google Scholar 

  3. Baum, E.B. (1990), The perceptron algorithm is fast for nonmalicious distribution, Neural computation, 2, 248.

    Article  Google Scholar 

  4. Baum, E.B., and Haussler, D. (1989), What size net gives valid generalization, Neural computation, 4, 151–160.

    Article  Google Scholar 

  5. Cohn, D., and Tesauro, G. (1992), How tight are the Vapnik-Chervonenkis bounds, Neural Computation, 4, 249–269.

    Article  Google Scholar 

  6. Engel, A., and den Broeck, C.V. (1993), Statistical mechanics calculation of Vapnik Chervonenkis bounds for perceptrons, J. Phys, 26 6893–6914.

    MathSciNet  Google Scholar 

  7. Feng, J. (1997), Behaviours of spike output jitter in the integrate-and-fire model. Phys. Rev. Letters (in press).

    Google Scholar 

  8. Feng, J. (1997), Lyapunov functions for neural nets with nondifferentiable inputoutput characterstics, Neural Computation, 9, 45–51.

    Article  Google Scholar 

  9. Feng, J. (1997), Generalisation error of the simple perceptron, (preprint).

    Google Scholar 

  10. Feng, J., and Hadeler, K. P. (1996), Qualitative behaviors of some simple neural networks, J. Phys. A, 29, 5019–5033.

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, J., Pan, H., and Roychowdhury, V. P. (1996), On neurodynamics with limiter function and Linsker’s developmental model, Neural Computation, 8, 1003–1019.

    Article  Google Scholar 

  12. Feng, J., and Tirozzi, B. (1995), The SLLN for the free-energy of the Hopfield and spin glass model, Helvetica Physica Acta, 68, 365–379.

    MathSciNet  MATH  Google Scholar 

  13. Galambos, J. (1984), Introductory Probability Theory, Marcek Dekker, INC., New York, 164–168.

    MATH  Google Scholar 

  14. Gray, M.S., Lawrence, D.T., Golomb, B.A., and Sejnowski, T.J. (1995), A perceptron reveals the face of sex, Neural Computation 7, 1160–1164.

    Article  Google Scholar 

  15. Haussler, D., Kearns, M., and Shapire, R. (1991), Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension, Proc. 4th Ann. Workshop on computational Learning Theory, Morgan Kaufmann, San Mateo, CA, 61–74.

    Google Scholar 

  16. Haussler, D., Littlestone, N., and Warmuth, K. (1988), Predicting {0, 1} functions on randomly drawn points, Proc. COLT’88, Morgan Kaufmann, San mateo, CA, 280–295.

    MATH  Google Scholar 

  17. Leadbetter, M.R., Lindgren, G., and Rootzén, H. (1983), Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Heidelberg, Berlin.

    Book  MATH  Google Scholar 

  18. Levin, E., Tishby, N., and Solla, S.A. (1990), A statistical approach to learning and generalization in layered neural networks, Proceeding of the IEEE, 78(10), 1568–1574.

    Article  MATH  Google Scholar 

  19. Murata, N., Yoshizawa, S., and Amari, S. (1994), Network information criteriondeterminate the number of hidden units for an artificial neural network model, IEEE Trans. NN, 6, 865–872.

    Article  Google Scholar 

  20. Newman, C., and Stein, D.L. (1996), Non-mean-field behavior of realistic spin glass, Physical Review Letter 76(3), 515–518.

    Article  Google Scholar 

  21. Opper, M., and Haussler, D. (1991), Calculation of the learning curve of Bayes optimal classification algorithm for learning perceptron with noise, Proceedings of the Fourth Annual Workshop on Computer Learning Theory, 75–87.

    Google Scholar 

  22. Opper, M., and Haussler, D. (1995), Bounds for predictive errors in the statistical mechanics of supervised learning, Physical Review Letter 75, 3772–3775.

    Article  Google Scholar 

  23. Seung, H.S., Sompolinsky, H., and Tishbby, N. (1992), Statistical mechanics of learning from examples, Physical Review A, 45, 6056–6091.

    Article  MathSciNet  Google Scholar 

  24. Vapnik, V.N., and Chervonenkis, A.Y. (1971), On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probab. and its Appl. 16(2), 264–280.

    Article  MATH  Google Scholar 

  25. Vapnik, E., Levin, E., and LeCun, Y. (1994), Measuring the VC dimension of a learning machine, Neural Computation, 5, 851–876.

    Article  Google Scholar 

  26. Watkin, T.L.H., Rau, A., and Biehl, M. (1993), The statistical mechanics of learning a rule, Rev. Mod. Phys., 65, 499–556.

    Article  MathSciNet  Google Scholar 

  27. Yamanishi, K. (1991), A loss bound model for on-line stochastic prediction strategies, Proceeding of the Fourth Annual Workshop on Computer Learning Theory, 290–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, J. (1999). Estimating exact form of generalisation errors. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098198

Download citation

  • DOI: https://doi.org/10.1007/BFb0098198

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics