A new input-output function for binary hopfield neural networks

  • Gerhard Galán
  • Juris Muñoz
Neural Modeling (Biophysical and Structural Models)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1606)


We present a new input-output function of the binary Hopfield neural network operating in a sequential mode and its application for solving combinatorial optimization problems. From convergence theorem for the binary network, we obtain the correct input-output function that satisfies the convergence conditions for any value of the self-conections. We also present performance comparison of different input-output functions through the N-queens problem. Our simulation results show that with our input-output function the network always reaches the global minimum in this problem. However, with McCulloch-Pitts or hysteresis McCulloch-Pitts functions the network is trapped in local minima.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. J. Hopfield and D. W. Tauk, “Neural computation of decisions in optimization problems”, Biol. Cybern., vol. 52, 1985, pp. 141–152.MATHGoogle Scholar
  2. [2]
    J. J. Hopfield, “Neural Networks and physical systems with emergent collective computational abilities” in Proc. Ac. Academy Sci. USA, vol. 79, 1982, pp. 2554–2558.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Y. Takefuji, K. C. Lee, “An artificial hysteresis binary neuron: a model supressing the oscillatory behaviors of neural dynamics”, Biol. Cybern., vol. 64, 1991, pp. 353–356.CrossRefGoogle Scholar
  4. [4]
    Y. Takefuji, K. C. Lee, “Artificial neural networks for four-colouring map problems and K-colorability problems”, IEEE Trans. Circuits Syst., vol. 38, 1991, pp. 326–333.CrossRefGoogle Scholar
  5. [5]
    Y. Takefuji, “Neural Network Parallel computing”, Kluwer Academic Publishers, 1992.Google Scholar
  6. [6]
    N. Funabiki, Y. Takenaka, S. Nishikawa, “A maximum neural network approach for N-queens problem”, Biol. Cybern., vol. 76, 1997, pp. 251–255.CrossRefMATHGoogle Scholar
  7. [7]
    M. Ohta, A. Ogihara, K. Fukumaga, “Binary neural network with self-feedback and its application to N-queens problem”, IEICE Trans. inf. & syst., vol. E77-D, no. 4, 1994, pp. 459–465.Google Scholar
  8. [8]
    Mandzink, J., “Solving the N-queens problem with a binary Hopfield-type network”, Biol. Cybern., vol. 72, 1995, pp. 439–445.CrossRefGoogle Scholar
  9. [9]
    Sun, Y., “A generalized updating rule for modified Hopfield neural network for quadratic optimization”, Neurocomputing, vol. 19, 1998, pp. 133–143.CrossRefGoogle Scholar
  10. [10]
    M. Peng, N.k. Gupta, A.F. Armitage, “An investigation into the improvement of local minima of the Hopfield network”, Neural Networks, vol. 9, 1996, pp. 1241–1253.CrossRefGoogle Scholar
  11. [11]
    M. Tateishi, S. Tamura, “Comments on ‘Artificial neural networks for four-colouring map problems and K-colorability problems”, IEEE Trans. Circuits Syst. I: Fundamental Theory Applical., vol. 41, 1994, pp. 248–249.CrossRefGoogle Scholar
  12. [12]
    L. Wang, “Discrete-time convergence theory and updating rules for neural networks with energy functions”, IEEE Trans. Neural Networks, vol. 8, 1997, pp. 445–447.CrossRefGoogle Scholar
  13. [13]
    C. K. Cheng, T. Lee, “On the convergence of Neural Network for higher order programming”, Proc. of International Joint Conference on Neural Networks, 1993, pp. 1507–1511.Google Scholar
  14. [14]
    J. K. Paik, A. K. Katsaggelos, “Image restoration using a modified Hopfield network”, IEEE Trans. Image Process., vol. 36(7), 1992, pp. 49–63.CrossRefGoogle Scholar
  15. [15]
    Y. Sun, J. G. Li, S. Y. Yu, “Improvement on performance of modified Hopfield network for image restoration”, IEEE Trans. Image Process., vol. 5, 1995, pp. 688–692.CrossRefGoogle Scholar
  16. [16]
    Y. T. Zhou, R. Chellappa, A. Vaid, B. K. Jenkins, “Image restoration using a neural networks”, IEEE Trans. Acoust. Speech Signal Process., vol. 36(7), 1988, pp. 1141–1151.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Gerhard Galán
    • 1
  • Juris Muñoz
    • 1
  1. 1.Applied Mathematics Department, Computer Science DepartmentUniversity of MalagaSpain

Personalised recommendations