Skip to main content

Effects of correlation and degree of balance in random synaptic inputs on the output of the hodgkin-huxley model

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

  • 521 Accesses

Abstract

We examine the effects of degree of balance between inhibitory and excitatory random synaptic inputs, and of positive correlation between the inputs on the mean and variability of the output of the classical Hodgkin-Huxley (HH) model for squid giant axon, using computer simulation. The mean interspike interval (ISI) and the coefficient of variation of ISI change little as the degree of balance changes, unlike the leaky integrate-and-fire model, frequently used in stochastic network modelling as an approximation to more biophysically based models. Low correlations (up to about 0.1) between 100 excitatory inputs each firing at 100 Hz reduce the mean(ISI) to below a third of its value when the inputs are independent, and CV by a factor of 5 from a near-Poisson range to one associated with regular firing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott L.F., Varela, J.A., Sen, K., and Nelson S.B. (1997). Synaptic depression and cortical gain control, Science 275, 220–223.

    Article  Google Scholar 

  2. Brown, D. and Feng, J. (1999) Is there a problem matching real and model CV (ISI)? Neurocomputing (in press).

    Google Scholar 

  3. Feerick, S.D., Feng, J. and Brown D. Accuracy of the diffusion approximation for the Hodgkin-Huxley model (in prep.)

    Google Scholar 

  4. Feng, J. (1997). Behaviour of spike output jitter in the integrate-and-fire model, Phys. Rev. Lett 79 4505–4508.

    Article  Google Scholar 

  5. Feng, J., and Brown D. (1998). Impact of temporal variation and the balance between excitation and inhibition on the output of the perfect integrate-and-fire model. Bio. Cyber. 78 369–376.

    Article  MATH  Google Scholar 

  6. Feng, J., and Brown, D. Spike output jitter, mean firing time and coefficient of variation J. Phys. A: Math. Gen., 31, 1239–1252, (1998).

    Article  MATH  Google Scholar 

  7. Feng, J. and Brown D. (1999) Impact of correlated inputs on the output of the integrate-and-fire model Neural Computation (accepted)

    Google Scholar 

  8. Hanson F.B., and Tuckwell H.C. (1983). Diffusion approximation for neuronal activity including synaptic reversal potentials. J. Theor. Neurobiol. 2 127–153.

    Google Scholar 

  9. Hertz J. (1997), Reading the information in the outcome of neural computation. in Building Blocks for Intelligent Systems, to appear.

    Google Scholar 

  10. Hodgkin, A.L. and Huxley, A.F. (1952), A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology, 117, 500–544.

    Article  Google Scholar 

  11. Holt G. R., Softky W.R., Koch C., and Douglas R. J. (1996). Comparison of discharge variability In Vitro and In Vivo in cat visual cortex neurons, J. of Neurophysiology, 1806–1814.

    Google Scholar 

  12. Hopfield, J.J., and Herz, A.V.M. (1995). Rapid local synchronization of action potentials: Towards computation with coupled integrate-and-fire networks. Proc. Natl. Acad. Sci. USA 92, 6655–6662.

    Article  Google Scholar 

  13. Koch C. (1997). Computation and the single neurone, Nature, 385, 207–210.

    Article  Google Scholar 

  14. Lánský P., Sacerdote L., and Tomassetti F. (1995). On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity Biol Cybern. 73 457–465.

    Article  MATH  Google Scholar 

  15. Lánský P., and Musila M. (1991). Variable initial depolarization in Stein’s neuronal model with synaptic reversal potentials. Biol. Cybern. 64 285–291.

    Article  Google Scholar 

  16. McCormick D.A., Connors B.W., Lighthall J.W., and Prince D.A. (1985). Cooperative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–805.

    Google Scholar 

  17. Mainen Z.F., and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurones, Science 268, 1503–1506.

    Article  Google Scholar 

  18. Mainen Z.F., and Sejnowski T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurones, Nature 382, 363–366.

    Article  Google Scholar 

  19. Ricciardi, L.M., and Sato, S. (1990), Diffusion process and first-passage-times problems. Lectures in Applied Mathematics and Informatics ed. Ricciardi, L.M., Manchester: Manchester University Press.

    Google Scholar 

  20. Rieke F., Warland D., de Ruyter van Steveninck R., and Bialek W. (1997), Spikes-Exploring The Neural Code. The MIT Press.

    Google Scholar 

  21. Sejnowski T. J. (1995). Time for a new neural code?, Nature, 323 21–22.

    Article  Google Scholar 

  22. de Ruyter van Steveninck R.R., Lewen G.D., Strong S.P., Koberle, R., and Bialek W. (1997). Reproducibility and variability in neural spike trains, Science 275, 1805–18008.

    Article  Google Scholar 

  23. Softky W., and Koch C. (1993). The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPs, J. Neurosic. 13 334–350.

    Google Scholar 

  24. Shadlen M.N., and Newsome W.T. (1994). Noise, neural codes and cortical organization, Curr. Opin. Neurobiol. 4, 569–579.

    Article  Google Scholar 

  25. Troyer T.W., and Miller K.D. (1997). Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell, Neural Computation 9, 733–745.

    Article  Google Scholar 

  26. Tuckwell H.C. (1979). Synaptic transmission in a model for stochastic neural activity. J. Theor. Biol. 77 65–81.

    Article  MathSciNet  Google Scholar 

  27. Tuckwell H.C., and Richter W. (1978). Neuronal interspike time distributions and the estimation fo neurophysiological and neuroanatomical parameters. J. Theor. Biol. 71 167–183.

    Article  Google Scholar 

  28. Tuckwell H. C. (1988), Stochastic Processes in the Neurosciences. Society for industrial and applied mathematics: Philadelphia, Pennsylvania.

    MATH  Google Scholar 

  29. Wilbur W.J., and Rinzel J. (1983). A theoretical basis of large coefficient of variation and biomodality in neuronal interspike interval distribution. J. Theor. Biol. 105 345–368.

    Article  Google Scholar 

  30. Zohary, E., Shadlen M.N., and Newsome W.T. (1994), Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370 140–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, D., Feng, J. (1999). Effects of correlation and degree of balance in random synaptic inputs on the output of the hodgkin-huxley model. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098174

Download citation

  • DOI: https://doi.org/10.1007/BFb0098174

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics