A self-organizing model for the development of ocular dominance and orientation columns in the visual cortex

  • E. M. Muro
  • M. A. Andrade
  • P. Isasi
  • F. Morán
Neural Modeling (Biophysical and Structural Models)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1606)


A binocular model describing the ontogenetic development in the visual nervous system is presented. It consists of a set of deterministic differential equations which have been derived from an statistical approach. The evolution of the solution is led by the spontaneous generation of input activity, characterized in this model by its spatial and temporal decorrelation. The development of a connection depends on the output activity of both connected neurons; for this purpose, Hebbian and anti-Hebbian learning have been used. The model can explain some properties observed in natural brains such as the appearance of ocular domains and orientation selectivity in the V1 visual cortex development.


Neural Networks Self-organization Hebbian and Anti-Hebbian Learning Spontaneous Activity Orientation Columns Ocular Domains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Andrade, and F. Morán. Structural study of the development of ocularity domains using a neural network model. Biol. Cybernetics., 74:243–254, 1996.CrossRefMATHGoogle Scholar
  2. 2.
    M. A. Andrade, and F. Morán. Receptive field map development by anti-hebbian learning. Neural Networks, 10(6):1037–1052, 1997.CrossRefGoogle Scholar
  3. 3.
    D. O. Hebb. The Organization of Behaviour, chapter Introduction, 4:The first stage of perception: growth New York: Wiley, 1949.Google Scholar
  4. 4.
    T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59–69, 1982.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R. Linsker. From basic network principles to neural architecture: Emergence of orientation-sective cells. Proc. Natl. Acad. Sci., 83:8390–8394, 1986.CrossRefGoogle Scholar
  6. 6.
    R. Linsker. From basic network principles to neural architecture: Emergence of orientation-columns. Proc. Natl. Acad. Sci., 83:8779–8783, 1986.CrossRefGoogle Scholar
  7. 7.
    R. Linsker. From basic network principles to neural architecture: Emergence of spatial-opponent cells. Proc. Natl. Acad. Sci., 83:7508–7512, 1986.CrossRefGoogle Scholar
  8. 8.
    K. D. Miller. Development of orientation columns via competition between on-and off-center inputs. Neuro Report, 3:73–76, 1992.Google Scholar
  9. 9.
    K. D. Miller. A model for the development of simple cells receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on-and off center inputs. Journal of Neuroscience, 14(1):409–441, 1994.Google Scholar
  10. 10.
    K. D. Miller, J. B. Keller, and M. P. Stryker. Ocular dominance column development; analysis and simulation. Science, 245:605–615, 1989.CrossRefGoogle Scholar
  11. 11.
    E. Oja. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15:267–273, 1982.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    S. J. Olson, and S. Grossberg. A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance. Neural Networks, 11:189–208, 1998.CrossRefGoogle Scholar
  13. 13.
    J. Sirosh, and R. Miikkulainen. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9:577–594, 1996.CrossRefGoogle Scholar
  14. 14.
    N. V. Swindale. The development of topography in the visual cortex: a review of models. Network: Computation in Neural Systems, 7:161–247, 1996.CrossRefMATHGoogle Scholar
  15. 15.
    C. von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14:85–100, 1973.CrossRefGoogle Scholar
  16. 16.
    C. von der Malsburg. Development of ocular domains and growth behaviour of axon terminals. Biological Cybernetics, 32:49–62, 1979.CrossRefGoogle Scholar
  17. 17.
    C. von der Malsburg, and D. J. Willshaw. A mechanish for producing continous neural mappings: ocularity dominance stripes and ordered retino-tectal projections. Exp. Brain Res. Suppl., 1:463–469, 1976.Google Scholar
  18. 18.
    B. A. Wandell. Foundations of Vision, chapter 6, page 160. Sinauer Associates, Inc, 1995.Google Scholar
  19. 19.
    M. Weliky, and L. C. Katz. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature, 386:680–685, 1997.CrossRefGoogle Scholar
  20. 20.
    S. Zeki. A Vision of the Brain, chapter 3, pages 41–49. Blackwell Scientific Publications, Oxford, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • E. M. Muro
    • 1
  • M. A. Andrade
    • 2
  • P. Isasi
    • 2
  • F. Morán
    • 3
  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridLeganésSpain
  2. 2.European Bioinformatics Institute HinxtonCambridgeUK
  3. 3.Departmento de Bioquímica y Biología MolecularUniversidad Complutense de MadridMadridSpain

Personalised recommendations