Advertisement

COSTPN for Modeling and control of telecommunication systems

  • Hermann de Meer
  • Oliver-Rainer Düsterhöft
  • Stefan Fischer
Performance Analysis with Stochastic Petri Nets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1605)

Abstract

The design of modern telecommunication systems is a complex task since many parameters, mostly of stochastic nature, have to be taken into account in order to achieve desired performance values. Stochastic Petri Nets (SPNs) are a well-known modeling and analysis tool for such systems. In addition, the ability to adapt system operations to quickly changing environment or system conditions is of great importance. Therefore, a new framework for the extension SPNs is presented in this paper which introduces elements providing means for a dynamic optimization of performability measures. A new type of transition is defined offering a feature for specification of controlled switching, called reconfiguration, from one set of markings of a SPN to another set of markings. In a numerical analysis, these optional reconfiguration transitions are evaluated in order to optimize a specified reward or cost function. The result of the analysis is a set of strategies which tell the controller of the system when to fire enabled reconfiguration transitions and when to remain in the current state. The extended SPNs are called COSTPNs (COn-trolled STochastic Petri Nets). For the numerical analysis, COSTPNs are mapped on EMRMs (Extended Markov Reward Models). Computational analysis is possible with algorithms adopted from Markov decision theory, including transient and stationary optimization. This paper introduces the new COSTPN model, discusses the algorithms necessary for the mapping of COSTPNs on EMRMs and shows how COSTPNs can be applied for the modeling and control of a typical telecommunications system, namely a multimedia server. Major emphasis is put on the introduction of new enabling and firing rules for reconfiguring transitions and on the illustration of the new modeling approach by means of the multimedia server example.

Keywords

stochastic Petri nets performability dynamic optimization extended Markov reward models Markov decision theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Baas 88]
    Baase S.: Computer algorithms, introduction to design and analysis; Addison-Wesley, 2nd Edition, chapter 4 (1988).Google Scholar
  2. [voBo 96]
    von Bochmann G. and A. Hafid “Some Principles for Quality of Service Management”, Technical Report, Universite de Montreal, (1996).Google Scholar
  3. [Choi 94]
    Choi H., V. G. Kulkarni, and K. S. Trivedi: “Markov Regenerative Stochastic Petri Nets”. Performance Evaluation 20, pp. 335–357, (1994).MathSciNetCrossRefGoogle Scholar
  4. [deMe 92]
    De Meer H.: “Transiente Leistungsbewertung und Optimierung rekonfigurierbarer fehlertoleranter Rechensysteme”; Arbeitsberichte des IMMD der Universität Erlangen-Nürnberg 25 (10), (October 1992).Google Scholar
  5. [deMe 94]
    De Meer, H., K. S. Trivedi and M. Dal Cin: “Guarded Repair of Dependable Systems”; Theoretical Computer Science, Special Issue on Dependable Parallel Computing 129, pp. 179–210 (July 1994).CrossRefGoogle Scholar
  6. [deMe 95]
    De Meer H. “Modeling and management of responsive systems: the quality of service for multimedia applications in high speed networks as an example”, 2. ISSAT Intern. Conf. on Reliability and Quality in Design, Orlando, Fl, (March 1995).Google Scholar
  7. [deMe 96]
    De Meer H. and H. Ševčíková: “XPenelope User Guide for XPenelope Version 3.1”; Technical Report FBI-HH-M-265/96, CS-Department, University of Hamburg (October 1996).Google Scholar
  8. [deMe 97]
    De Meer H. and H. Ševčíková: “PENELOPE—dependability evaluation and the optimization of performability”; 9th Intern. Conf. on Computer Performance Evaluation, St. Malo, France, Lectures Notes on Computer Science (LNCS 1245), pp. 19–31 (June 1997).Google Scholar
  9. [Germ 95]
    German R., Ch. Kelling, A. Zimmermann and G. Hommel: “TimeNET: A Toolkit for evaluating non-Markovian Petri nets”; Performance 24, pp. 69–87 (1995).MATHCrossRefGoogle Scholar
  10. [Have 94]
    Haverkort B.R. and L.J.N. Franken: “The performability manager, dynamically reconfiguring distributed systems”; IEEE Network 8 (1), pp. 24–32 (1994).CrossRefGoogle Scholar
  11. [Have 96]
    Haverkort B.R., I.G. Niemegeers: “Performability Modeling Tools and Techniques”; Performance Evaluation 25 (1), pp. 17–40 (March 96).CrossRefGoogle Scholar
  12. [Kram 85]
    Kramer J. and J. Magee: “Dynamic configuration of distributed systems”; IEEE Transactions on Software Engineering 11 (4), pp 424–436 (April 1985).Google Scholar
  13. [Maus 90]
    Mauser H.: “Implementierung eines Optimierungsverfahrens für rekonfigurierbare Systeme”; Master thesis, University of Erlangen-Nürnberg (1990).Google Scholar
  14. [Mars 84]
    marsan M.A., G. Conte and G. Balbo: “A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems”; ACM Transactions on Computer Systems 2 (2), pp. 93–122 (May 1984).CrossRefGoogle Scholar
  15. [Mars 95]
    Marsan M.A., G. Balbo, G. Conte, S. Donatelli and G. Franceschinis: Modeling with generalized stochastic Petri nets; John Wiley & Sons, Series in parallel computing (1995).Google Scholar
  16. [Moll 81]
    Molloy M.K.: “On the integration of delay and throughput measures in distributed processing models”, Ph.D. thesis, University of California (1981).Google Scholar
  17. [Lee 87]
    Lee Y.H., K.G. Shin: “Optimal Reconfiguration Strategy for a Degradable Multimodule Computing System”; Journal of the ACM 34 (2), pp. 326–348 (1987).MATHMathSciNetCrossRefGoogle Scholar
  18. [Perf 92]
    “Special Issue on Performability”; Performance Evaluation (Feb. 1992).Google Scholar
  19. [Stew 94]
    Stewart W. J.: Introduction to the Numerical Solution of Markov Chains; Princeton University Press (1994).Google Scholar
  20. [Triv 91]
    Trivedi K.S., G. Ciardo and J.K. Muppala: “On the solution of GSPN reward models”; Performance Evaluation 12, pp. 237–253 (1991).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Hermann de Meer
    • 1
  • Oliver-Rainer Düsterhöft
    • 1
  • Stefan Fischer
    • 2
  1. 1.Department of Computer ScienceUniversity of HamburgHamburg
  2. 2.Praktische Informatik IVUniversity of MannheimMannheim

Personalised recommendations