Advertisement

On the unimodality of infinitely divisible distribution functions II

  • Stephen James Wolfe
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 861)

Abstract

A great deal of work has been done during the last 45 years concerning the unimodality of one-dimensional infinitely divisible distribution functions. Recently, a few results have been obtained for multivariate infinitely divisible distribution functions. The purpose of this paper is to give a survey of previous work and to discuss some unsolved problems.

Keywords

Distribution Function Independent Random Variable Symmetric Operator Bution Function Multivariate Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, T. W. (1955) The interval of a symmetric unimodal function, Proc. Amer. Math. Soc. 6, 170–176.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Chung, K. L. (1953) Sur les lois des probabilities unimodales, C. R. Acad. Sci. Paris 236, 583–584.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Dharmadhikari, S. W. and Jogdeo, K. (1976) Multivariate unimodality, Ann. Statist. 4, 607–613.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Gnedenko, B. V. and Kolmogorov, A. N. (1954) Limit Distributions for Sums of Independent Random Variables (translation K. L. Chung) Reading, Mass., Addison Wesley.Google Scholar
  5. [5]
    Ibraginov, I. A. (1957) A remark on probability distributions of class L, Theor. Probability Appl. 2, 117–119.CrossRefGoogle Scholar
  6. [6]
    Ibraginov, I. A. and Chernin, K. F. (1959) On the unimodality of stable laws, Theor. Probability Appl. 4, 417–419.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Kanter, M. (1976) On the unimodality of stable densities, Ann. Probability 4, 1006–1008.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Kanter, M. (1977) Unimodality and dominance of symmetric random vectors, Trans. Amer. Math. Soc. 229, 65–86.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Lapin, A. I. (1947) On properties of stable laws, Ph.D. dissertation.Google Scholar
  10. [10]
    Medgyessy, P. (1967) On a new class of unimodal infinitely divisible distribution functions and related topics, Studia Sci. Math. Hungar. 2, 441–446.MathSciNetGoogle Scholar
  11. [11]
    Olshen, R. A. and Savage, L. J. (1970) A generalized unimodality, J. Appl. Prob. 7, 21–34.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Sato, K. and Yamazato, M. (1978) On distribution functions of class L, Z. Wahrschienlichkeitstheorie verw. Gebiete 43, 273–308.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Sharpe, M. (1969) Stable distributions on vector groups, Trans. Amer. Math. Soc. 136, 119–148.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Sherman, S. (1955) A theorem on convex sets with applications, Ann. Math. Statist. 26, 763–767.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Steutel, F. and van Harn, K. (1979) Discrete analogues of self-decomposibility and stability, Ann. Probability 7, 893–899.CrossRefzbMATHGoogle Scholar
  16. [16]
    Sun, T. C. (1967) A note on the unimodality of distributions of class L, Ann. Math. Statist. 38, 1296–1299.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Urbanik, K. (1972) Levy’s probability measures on Euclidean spaces, Studia Math. 44, 119–148.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Wintner, A. (1936) On a class of Fourier transforms, Amer. J. Math. 58, 45–90.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Wintner, A. (1956) Cauchy’s stable distributions and an "explicit formula" of Mellin, Amer. J. Math. 78, 319–361.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Wells, D. R. (1978) A monotone unimodal distribution which is not central convex unimodal, Ann. Statist. 6, 926–931.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Wolfe, S. J. (1971) On the unimodality of L functions, Ann. Math. Statist. 42, 912–918.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Wolfe, S. J. (1978) On the unimodality of symmetric distribution functions of class L, J. Multivar. Anal. 5, 236–242.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Wolfe, S. J. (1978) On the unimodality of infinitely divisible distribution functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 45, 229–235.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Wolfe, S. J. (1980) A characterization of Lévy probability distribution functions on Euclidean spaces, J. Multivar. Ann. 10 379–384MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Yamazato, M. (1978) Unimodality of infinitely divisible distribution functions of class L, Ann. Probability 6, 573–531.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Stephen James Wolfe
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewark

Personalised recommendations