Advertisement

On the rate of convergence in the central limit theorem

  • Vijay K. Rohatgi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 861)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amosova, N. N., On the rate of convergence of probabilities of moderate deviations under restrictions on the moments. Theor. Prob. and Math. Statist., 19(1980), 1–6.zbMATHGoogle Scholar
  2. [2]
    Banys, J., Estimate of convergence rate for densities in the metric of Lp. Liet. Mat. Rinkinys, 15(1975), 5–10.zbMATHGoogle Scholar
  3. [3]
    Banys, J., Refinement of rate of convergence to a stable law. Liet. Mat. Rinkinys, 16(1976), 5–22.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Banys, J., Refinement of the rate of convergence of densities to the stable law with characteristic exponent 0<α<1 in the metric of Lp. Liet. Mat. Rinkinys, 18(1978), 174–178.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Baum, L. E., and Katz, M. L., On the influence of moments on the asymptotic distribution of sums of random variables. Ann. Math. Stat., 34(1963), 1042–1044.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Galstjan, F. N., Local analysis of a theorem of Heyde. Soviet Math. Dokl., 12(1971), 596–600.Google Scholar
  7. [7]
    Galstjan, F. N., On asymptotic expansions in the central limit theorem. Theory Prob. Appl., 16(1971), 528–533.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Galstjan, F. N., On the rate of convergence in the central limit theorem. Theor. Prob. and Math. Statist., 5 (1975), 13–24.MathSciNetGoogle Scholar
  9. [9]
    Heyde, C. C., On the influence of moments on the rate of convergence to the normal distribution. Z. Wahrscheinlichkeitstheorie, 8(1967), 12–18.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Heyde, C. C., Some properties of metrics in a study on convergence to normality. Z. Wahrscheinlichkeitstheorie, 11(1969), 181–192.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Heyde, C. C., and Leslie, J. R., On the influence of moments on approximations by portion of a Chebyshev series in central limit convergence. Z. Wahrscheinlichkeitstheorie, 21(1972), 255–268.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Ibragimov, I. A., and Linnik, Yu. V., Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen 1971.Google Scholar
  13. [13]
    Loève, M., Probability Theory. D. Van Nostrand, Princeton 1963.zbMATHGoogle Scholar
  14. [14]
    Petrov, V. V., Sums of Independent Random Variables. Springer-Verlag, New York 1975.CrossRefzbMATHGoogle Scholar
  15. [15]
    Rohatgi, V. K., Convergence to normality in L1-metric. Bull. Inst. Math. Acad. Sinica, 4(1976), 83–86.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Rohatgi, V. K., Asymptotic expansions in a local limit theorem. Colloquia Mathematica Societas János Bolyai, Vol. 21, ed. B. Gyires, North-Holland 1979, 307–315.Google Scholar
  17. [17]
    Rychlik, Z., and Szynal, D., Convergence rates in the central limit theorem for sums of a random number of independent random variables. Teor. Veroyatnost. Primen., 20(1975), 359–370.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Serova, G. V., On the rate of convergence in the central limit theorem. Theor. Prob. and Math. Statist., 17(1979), 121–130.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Vijay K. Rohatgi
    • 1
  1. 1.Department of Mathematics and StatisticsBowling Green State UniversityBowling Green

Personalised recommendations