Local time and invariance

  • P. Révész
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 861)


Local Time Probability Space Wiener Process Invariance Principle Iterate Logarithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BÀRTFAI, P. (1966) Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungs funktion aus den mit Fehlern behafteten Daten einer Einzigen Relation. Studia Sci. Math.Hung. 1 161–168.zbMATHGoogle Scholar
  2. BREIMAN, L. (1968) Probability. Addison-Wesley Reading, Mass.zbMATHGoogle Scholar
  3. CHUNG, K.L. (1948) On the maximum partial sums of sequences of independent random variables. Trans.Amer. Math.Soc. 64 205–233.MathSciNetCrossRefzbMATHGoogle Scholar
  4. CHUNG, K.L.-HUNT, G.A. (1949) On the zeros of Open image in new window. Annals of Math. 50 385–400.MathSciNetCrossRefzbMATHGoogle Scholar
  5. CSÖRGŐ, M.-RÉVÉSZ, P. (1975) A new method to prove Strassen type laws of invariance principle, I. Z.Wahrscheinlichkeitstheorie verw. Gebiete 31 225–260.MathSciNetzbMATHGoogle Scholar
  6. DONSKER, M.D.-VARADHAN, S.D. (1977) On laws of the iterated logarithms for local times. Communications on pure and applied math. 30 707–754.MathSciNetCrossRefzbMATHGoogle Scholar
  7. KESTEN, H. (1965) An interated logarithm law for the local time. Duke Math. J. 32 447–456.MathSciNetCrossRefzbMATHGoogle Scholar
  8. KESTEN, H.-SPITZER, F. (1979) A limit teorem related to a review. Gebiete 50 5–25.MathSciNetCrossRefzbMATHGoogle Scholar
  9. KOMLÓS, J.-MAJOR, P.-TUSNÁDY, D. (1976) An approximation of indepdent R.V.’s and the sample D.F. II. Z.Wahrscheinlichkeitstheorie verw. Gebiete 34 33–58.CrossRefzbMATHGoogle Scholar
  10. RÉNYI, A. (1970) Foundations of probability. Holden-Day, Inc. San-Francisco.zbMATHGoogle Scholar
  11. RÉVÉSZ,P. (1981)A characterization of the asymptotic properties of stochastic processes by four classes Ann. Probability 9 (To appear).Google Scholar
  12. TROTTER, H.F. (1958) A property of Brownian motion paths. Illinois J. of Math. 2 425–433.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. Révész

There are no affiliations available

Personalised recommendations