Advertisement

Weak convergence to stable laws by means of a weak invariance principle

  • Gordon Simons
  • William Stout
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 566)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Csörgö, M. and Révész, P. (1975). A new method to prove Strassen type laws of invariance principle. I. Z. Wahrscheinlichkeitstheorie Verv. Gebiete 31, 255–259.CrossRefMATHGoogle Scholar
  2. [2]
    Doeblin, W. (1940). Sur l' ensemble de pruissances d' une loi de probabilité. Studia Math. 9, 71–96.MathSciNetMATHGoogle Scholar
  3. [3]
    Gnedenko, B. V. (1940) (in Russian). Some theorems on the powers of distribution functions. Uchenye Zapiski Moskov. Gos. Univ. Mathematika 45, 61–72.MathSciNetGoogle Scholar
  4. [4]
    Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV's and DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32, 111–131.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Lévy, Paul (1954). Théorie de l' Addition des Variables Aléatories, 2nd ed. Paris: Guathier-Villars.Google Scholar
  6. [6]
    Loève, M. (1963). Probability Theory, 3rd ed. Princeton, New Jersey: Van Nostrand.MATHGoogle Scholar
  7. [7]
    Philipp, W., and Stout, W. (1975). Almost sure invariance principles for partial sums of weakly dependent random variables. Amer. Math. Soc. Mem. No. 161. Amer. Math. Soc., Providence, Rhode Island.MATHGoogle Scholar
  8. [8]
    Root, D. and Rubin, H. (1973). A probabilistic proof of the normal convergence criterion. Ann. Prob. 1, 867–869.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3, 211–226.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Strassen, V. (1965). Almost sure behavior of sums of independent random variables and martingales. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 2, 315–343.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Gordon Simons
    • 1
  • William Stout
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations