Three theorems of multivariate empirical process

  • P. Révész
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 566)


Let x 1 , x 2 ,... be a sequence of independent r.v.'s uniformly distributed over the unit cube I d of the d-dimensional Euclidean Space. Further let F n be the empirical distribution function based on the sample x 1 ,x 2 ,...,x n and let
$$\alpha _n (x) = n^{1/2} (F_n (x) - x_1 x_2 ...x_d )(x = (x_1 ,x_2 ,...,x_d ) \in _I ^d )$$
be the empirical process. The properties of the stochastic set function \(\alpha _n (A) = \int\limits_A {d\alpha _n }\) are investigated when A runs over a class of Borel sets of I d . Let A be the set of Borel sets of I d having d-times differentiable boundaries. Then a large deviation theorem and a law of iterated logarithm are proved for \(\mathop {\sup }\limits_{A \in A} \alpha _n (A)\). A strong invariance principle (uniform over A) is also formulated.


Invariance Principle Empirical Measure Empirical Process Iterate Logarithm Empirical Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CSÁKI, E. (1968). An iterated logarithm law for semimartingales and its application to empirical distribution function. Studia Sci. Math. Hung. 3 287–292.MathSciNetzbMATHGoogle Scholar
  2. [2]
    CSÖRGÖ, M. and RÉVÉSZ, P. (1975). A new method to prove Strassen type laws of invariance principle. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 261–269.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    DUDLEY, R.M. (1973). Sample function of Gaussian process. Ann. Probability 1 66–103.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    DUDLEY, R.M. (1974). Metric entropy of some classess of sets with differentiable boundaries. Journal of Approximation Theory 10 227–236.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    FINKELSTEIN, H. (1971). The law of iterated logarithm for empirical distributions. Ann. Math. Statist. 42 607–615.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    GAENSSLER, P. and STUTE, W. (1975). A survey on some results for multidimensional empirical processes in the I.I.D. case. Technical report. Ruhr-Universitäet Bochum.Google Scholar
  7. [7]
    KIEFER, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math. 11 649–660.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approximation of partial sums of independent r.v.'s and the sample d.f.I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 111–131.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    PHILIPP, W. (1973). Empirical distribution functions and uniform distribution mod 1. Diophantine approximation and its applications. Academic Press, New York.Google Scholar
  10. [10]
    RÉNYI, A. (1970). Probability Theory. Akadémiai Kiadó, Budapest.zbMATHGoogle Scholar
  11. [11]
    RÉVÉSZ, P. (1976). On strong approximation of the multidimensional empirical process. To appear. Ann. Probability.Google Scholar
  12. [12]
    STRASSEN, V. (1964). An invariance principle for the law of the iterated lograithm. Z. Wahrscheinlichkeitstheorie und Verw. Geobiete 3 211–226.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    STUTE, W. (1975). Convergence rates for the isotrope discrepancy. Technical report, Ruhr-Universität Bochum.Google Scholar
  14. [14]
    TUSNÁDY, G. (1976). A remark on the approximation of the sample DF in the multi-dimensional case. To appear. Periodica Math. Hung. Google Scholar
  15. [15]
    WICHURA, M.J. (1973). Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments. Ann. Probability 1 272–296.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    ZAREMBA, S.K. (1970). La discrépance isotrope et l'integration numérique. Ann. Mat. Pura Appl. (IV) 87, 125–135.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    ZAREMBA, S.K. (1971). Sur la discrépance des suites aléatoires. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 236–248.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. Révész

There are no affiliations available

Personalised recommendations