Almost sure invariance principles for empirical distribution functions of weakly dependent random variables

  • Walter Philipp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 566)


Unit Ball Limit Point Invariance Principle Reproduce Kernel Hilbert Space Iterate Logarithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronszajn, N. (1950), The theory of reproducing kernels, Trans. Amer. Math. Soc. 68, 337–404.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Berkes, István (1975), On the asymptotic behavior of ∑ f(nk, x) parts I + II, Z. Wahrscheinl, verw. Geb. 34, 319–365.MathSciNetCrossRefGoogle Scholar
  3. Billingsley, Patrick (1967), unpublished manuscript.Google Scholar
  4. Billingsley, Patrick (1968), Convergence of probability measures, Wiley, New York.zbMATHGoogle Scholar
  5. Cassels, J. W. S. (1951), An extension of the law of the iterated logarithm, Proc. Cambridge Philos. Soc. 47, 55–64.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Chover, J. (1967), On Strassen's version of the log log law, Z. Wahrscheinl. verw. Geb. 8, 83–90.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chung, K.-L. (1949), An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67, 36–50.MathSciNetzbMATHGoogle Scholar
  8. Donsker, M. (1952), Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Stat. 23, 277–281.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Erdős, P. (1964), Problems and results on diophantine approximations, Compositio Math 16, 52–65.MathSciNetzbMATHGoogle Scholar
  10. Erdös, P. and Gál, I. S., On the law of the iterated logarithm, Proc. Koninkl. Nederl. Akad Wetensch. Ser. A 58, 65–84.Google Scholar
  11. Finkelstein, Helen (1971), The law of the iterated logarithm for empirical distributions, Ann. Math. Stat. 42, 607–615.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Meschkowski, Herbert (1962), Hilbertsche Räume mit Kernfunktionen, Springer, Berlin.CrossRefzbMATHGoogle Scholar
  13. Oodaira, Hiroshi (1975), Some functional laws of the iterated logarithm for dependent random variables, Colloqu. Math. Soc. János Bolyai 11, 253–272.MathSciNetzbMATHGoogle Scholar
  14. Philipp, Walter (1975), Limit theorems for lacunary series and uniform distribution mod 1, Acta Arithmetica 26, 241–251.MathSciNetzbMATHGoogle Scholar
  15. Philipp, Walter and Stout, William (1975), Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs Amer. Math. Soc. 161.Google Scholar
  16. Riesz, F. and Sz. Nagy, B. (1955), Functional analysis, Frederick Unger, New York.zbMATHGoogle Scholar
  17. Smirnoff, N. (1939), Sur les ecarts de le courbe de distribution coupirique. Mat. Sbornik 6, 3–26.MathSciNetzbMATHGoogle Scholar
  18. Stout, W. F. (1974), Almost sure convergence. Academic Press, New York.zbMATHGoogle Scholar
  19. Strassen, V. (1965), An invariance principle for the law of the iterated logarithm. Z. Wahrscheinl. 3, 211–226.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Walter Philipp
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations