Advertisement

On the Erdös-Rényi increments and the P. Lévy modulus of continuity of a kiefer process

  • Miklós Csörgő
  • Arthur H. C. Chan
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 566)

Keywords

Wiener Process Empirical Process Iterate Logarithm Brownian Bridge Large Deviation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chan, Arthur H.C. (1976). Erdős-Rényi type modulus of continuity theorems for Brownian sheets. To appear.Google Scholar
  2. [2]
    Chan, A.H.C., Csörgő, M. and Révész, P. (1976). On the increments of a multi-parameter Wiener process. To appear.Google Scholar
  3. [3]
    Csörgő, M. and Révész, P. (1975). A new method to prove Strassen type laws of invariance principle II. Z. Wahrscheinlichkeitstheorie verw. Geb. 31 261–269.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Csörgő, M. and Révész, P. (1976a). A strong approximation of the multivariate empirical process. To appear.Google Scholar
  5. [5]
    Csörgő, M. and Révész, P. (1976b). How big are the increments of a Wiener process? To appear.Google Scholar
  6. [6]
    Erdős, P. and Rényi, A. (1970). On a new law of large numbers. Journal d'Analyse Mathematique 13 103–111.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Kiefer, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math. 11 649–660.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV's, and the sample DF.I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32 111–131.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV's, and the sample DF. II. Z. Wahrscheinlichkeitstheorie verw. Geb. 34 33–58.CrossRefzbMATHGoogle Scholar
  10. [10]
    Lévy, P. (1937). Theorie de l'addition des variables aleatoires independantes, Aguthier-Villars, Paris.zbMATHGoogle Scholar
  11. [11]
    Major, P. (1976). The approximation of partial sums of independent r.v.'s. To appear.Google Scholar
  12. [12]
    Müller, D.W. (1970). On Glivenko-Cantelli convergence. Z. Wahrscheinlichkeitstheorie verw. Geb. 16 195–210.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Orey, S. and Pruitt, W.E. (1973). Sample functions of the N-parameter Wiener process. Ann. Probability 1 138–163.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Orey, S. and Taylor, S.J. (1974). How often on a Brownian paths does the law of iterated logarithm fail? Proc. London Math. Soc. (3) 28 174–192.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Révész, P. (1976). Three theorems on the multivariate empirical process. In these Lecture Notes.Google Scholar
  16. [16]
    Kiefer, J. (1972). Skorohod embedding of multivariate RV's and the sample DF. Z. Wahrscheinlichkietstheorie verw. Geb. 24 1–35.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Miklós Csörgő
    • 1
  • Arthur H. C. Chan
    • 1
  1. 1.Carleton UniversityOttawaCanada

Personalised recommendations