Advertisement

Values and growth of functions regular in the unit disk

  • W. K. Hayman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 599)

Keywords

Maximum Modulus Cambridge Philos Coefficient Problem Finite Logarithmic Measure Moebius Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Aharonov and S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn., ser. Al no. 524 (1972), 14 pp.Google Scholar
  2. 2.
    A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. A. Brannan, J. G. Clunie and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn., ser. A1. Math. (1973), no. 523, 18 pp.Google Scholar
  4. 4.
    M. L. Cartwright, Some inequalities in the theory of functions, Math. Ann. 3 (1935), 98–118.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. J. Hansen, Hardy classes and ranges of functions, Mich. Math. J. 17 (1970), 235–248.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. K. Hayman, Some remarks on Schottky's theorem, Proc. Cambridge Philos. Soc. 43 (1947), 442–454.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    W. K. Hayman, Some inequalities in the theory of functions, Proc. Cambridge Philos. Soc. 44 (1948), 159–178.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W. K. Hayman, Inequalities in the theory of functions, Proc. London Math. Soc. (2) 51 (1949), 450–473.MathSciNetzbMATHGoogle Scholar
  9. 9.
    W. K. Hayman, Functions with values in a given domain, Proc. Amer. Math. Soc. 3 (1952), 428–432.MathSciNetzbMATHGoogle Scholar
  10. 10.
    W. K. Hayman, Uniformly normal families, Lectures on functions of a complex variable, University of Michigan Press, 1955, pp. 119–212.Google Scholar
  11. 11.
    W. K. Hayman and A. Weitsman, On the coefficients and means of functions omitting values, Math Proc. Cambridge Philos. Soc. 77 (1975), 119–137.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    W. T. Lai, Über den Satz von Landau, Sci. Record N. S. 4 (1960), 339–342.MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1924), 481–519.MathSciNetzbMATHGoogle Scholar
  14. 14.
    K. Löwner, Untersuchungen Über die Verzerrung bei konformen Abbildungen des Einheitskreises |z|<1, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Leipzig Ber. 69 (1917), 89–106.zbMATHGoogle Scholar
  15. 15.
    C. Pommerenke, On the growth of the coefficients of analytic functions, J. London Math. Soc. 5 (1972), 624–628.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • W. K. Hayman
    • 1
  1. 1.Imperial CollegeLondonEngland

Personalised recommendations