On the joining of sticky brownian motion

  • J. Warren
Questions de Filtrations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1709)


We present an example of a one-dimensional diffusion that cannot be innovated by Brownian motion. We do this by studying the ways in which two copies of sticky Brownian motion may be joined together and applying Tsirel'son's criteria of cosiness.


Brownian Motion Maximal Correlation Exponential Random Variable Singular Contribution Bounded Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Barlow, One dimensional stochastic differential equation with no strong solution. Journal of the London Mathematical Society, 26: 335–347, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Barlow, M. Émery, F. Knight, S. Song, M. Yor, Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes. Sém. de Probabilités XXXII, Lecture notes in Mathematics 1686 264–305. Springer, 1998.Google Scholar
  3. [3]
    M. Barlow, J. Pitman, M. Yor, On Walsh's Brownian motions. Sém. de. Probabilités XXIII, Lecture notes in Mathematics 1372, 275–293. Springer, 1989.Google Scholar
  4. [4]
    S. Beghdadi-Sakrani, M. Émery, On certain probabilities equivalent to cointossing, d'après Schachermayer. In this volume, 1999.Google Scholar
  5. [5]
    M. Émery, M. Yor, Sur un théorème de Tsirelson relatif à des mouvements browniens corrélés et à la nullité de certain temps locaux. Sém. de Probabilités XXXII. Lecture notes in Mathematics 1686, 306–312. Springer. 1998.Google Scholar
  6. [6]
    W. Feller, On boundaries and lateral conditions for the Kolmogorov equations. Annals of Mathematics, Series 2, 65: 527–570, 1957.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P.A. Meyer, C. Stricker, M. Yor, Sur une formule de la théorie du balayage. Sém. de Probabilités XIII, Lecture notes in Mathematics 721, 478–487. Springer, 1979.Google Scholar
  8. [8]
    D. Revuz, M. Yor, Continous martingales and Brownian motion, Springer, Berlin, 1991.CrossRefzbMATHGoogle Scholar
  9. [9]
    B. Tsirelson, Walsh process filtration is not Brownian. Preprint, 1996.Google Scholar
  10. [10]
    B. Tsirelson, Triple points: From non-Brownian filtrations to harmonic measures. Geom. Funct. Anal. 7: 1096–1142, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Tsirelson, Within and beyond the reach of Brownian innovation. Documenta Mathematica, extra volume ICM 1998, III: 311–320.Google Scholar
  12. [12]
    J. Warren, Branching Processes, the Ray-Knight theorem, and sticky Brownian motion, Sém. de Probabilités XXXI, Lecture notes in Mathematics 1655, 1–15. Springer, 1997. *** DIRECT SUPPORT *** A00I6C60 00006Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • J. Warren
    • 1
  1. 1.University of WarwickUK

Personalised recommendations