Advertisement

Travaux de Ferrero et Washington sur le nombre de classes d'idéaux des corps cyclotomiques

  • Joseph Oesterlé
Conference paper
  • 152 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 770)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J. COATES-p-adic l-functions and Iwasawa's theory, Algebraic Number Fields, Academic Press, London, 1977, 269–353.Google Scholar
  2. [2]
    R. ERNVALL and T. METSÄNKYLÄ-Cyclotomic invariants and E-irregular primes, Math. of Comp., 32(1978).Google Scholar
  3. [3]
    B. FERRERO-Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9–24.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    B. FERRERO and L. WASHINGTON-The Iwasawa invariant μp vanishes for abelian number fields, Annals of Math., à paraître.Google Scholar
  5. [5]
    R. GILLARD-Extensions abéliennes et répartition modulo 1, dans "Journées arithmétiques de Marseille", Astérisque, vol. 61, 1979, à paraître.Google Scholar
  6. [6]
    H. HASSE-Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag Berlin, 1952.zbMATHGoogle Scholar
  7. [7]
    K. IWASAWA-A note on class numbers of algebraic number fields, Abh. Math. Sem. Hamb., 20 (1956), 257–258.zbMATHMathSciNetGoogle Scholar
  8. [8]
    K. IWASAWA-On some invariants of cyclotomic fields, Amer. J. Math., 80(1958), 773–783; erratum 81(1959), 280.zbMATHCrossRefGoogle Scholar
  9. [9]
    K. IWASAWA-On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183–226.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    K. IWASAWA-On p-adic l-functions, Ann. of Math., 89(1969), 198–205.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    K. IWASAWA-On some infinite abelian extensions of algebraic number fields, Actes, Congrès Intern.Math., 1970, tome 1, 391–394.Google Scholar
  12. [12]
    K. IWASAWA-Lectures on p-adic l-functions, Princeton University Press, 1972.Google Scholar
  13. [13]
    K. IWASAWA-On the μ-invariants ofp-extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Y. Akizuki, Kinokuniya, Tokyo, 1973, 1–11.Google Scholar
  14. [14]
    K. IWASAWA and C. SIMS-Computations of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan, 18(1966), 86–96.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    W. JOHNSON-On the vanishing of the Iwasawa invariant μp for p<8000, Math. Comp., 27(1973), 387–396.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    W. JOHNSON-Irregular primes and cyclotomic invariants, Math. Comp., 29(1975), 653–657.Google Scholar
  17. [17]
    L. KUIPERS and H. NIEDERREITER-Uniform distribution of sequences, Wiley-Interscience, 1974.Google Scholar
  18. [18]
    J.-P. SERRE-Classes des corps cyclotomiques, Séminaire Bourbaki, Exposé 174, Décembre 1958, W. Benjamin/Addison-Wesley, N.Y.Google Scholar
  19. [19]
    S. WAGSTAFF, Jr.-The irregular primes to 125 000, Math. of Comp., 32 (1978), 583–591.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    L. WASHINGTON-Class numbers and ZZp-extensions, Math. Ann., 214(1975), 177–193.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. WASHINGTON-The non-p-part of the class number in a cyclotomic ZZp-extension, Invent. Math., 49(1978), 87–97.MathSciNetCrossRefGoogle Scholar

Copyright information

© N. Bourbaki 1980

Authors and Affiliations

  • Joseph Oesterlé

There are no affiliations available

Personalised recommendations