Théorie de la diffusion pour l'equation de Schrödinger

  • Pierre Cartier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 770)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


A. Ouvrages généraux

  1. [1]
    V. de ALFARO et T. REGGE-Potential scattering, North Holland, Amsterdam, 1965.zbMATHGoogle Scholar
  2. [2]
    W. AMREIN, J. JAUCH, K. SINHA-Scattering theory in quantum mechanics, Benjamin, New York, 1977.zbMATHGoogle Scholar
  3. [3]
    K.O. FRIEDRICHS-Perturbation of spectra in Hilbert space, Amer. Math. Soc. Lect. in Appl. Math., vol. 3, Providence, 1965.Google Scholar
  4. [4]
    T. KATO-Perturbation theory for linear operators, 2e édit., Springer, New York, 1976.zbMATHGoogle Scholar
  5. [5]
    R.G. NEWTON-Scattering theory of waves and particles, McGraw Hill, New York, 1966.zbMATHGoogle Scholar
  6. [6]a
    vol.I: Functional analysis, 1972zbMATHGoogle Scholar
  7. [6]b
    vol.II: Fourier analysis, self-adjointness, 1975zbMATHGoogle Scholar
  8. [6]c
    vol.III: Scattering theory, 1979zbMATHGoogle Scholar
  9. [6]d
    vol.IV: Analysis of operators, 1978.zbMATHGoogle Scholar
  10. [7]
    I.M. SIGAL, Mathematical foundations of quantum scattering theory for multiparticle systems, Memoirs Amer. Math. Soc., vol. 209, Providence, 1978.Google Scholar
  11. [8]
    W. THIRRING et P. URBAN (éditeurs)-The Schrödinger equation, Springer, Wien, 1977.zbMATHGoogle Scholar

B. Méthodes non-stationnaires

  1. [9]
    W. AMREIN et D.B. PEARSON-A time-dependent approach to the total scattering cross-section, à paraître.Google Scholar
  2. [10]
    J.M. COOK-Convergence to the Møller wave matrix, Journ. Math. Phys. 36 (1957), p. 82–87.Google Scholar
  3. [11]
    M.N. HAAK-On the convergence to the Møller wave operators, Nuovo Cimento, X Ser. 13 (1959), p. 231–236.Google Scholar
  4. [12]
    J. JAUCH-Theory of the scattering operator, Helv. Phys. Acta, 31 (1958), p. 127–158.zbMATHMathSciNetGoogle Scholar
  5. [13]
    T. KATO-Wave operators and unitary equivalence, Pac. Journ. Math., 15 (1965), p. 171–180.zbMATHGoogle Scholar
  6. [14]
    S.T. KURODA-On the existence and the unitary property of the scattering operator, Nuovo Cimento, X Ser. 12 (1959), p. 431–454.zbMATHGoogle Scholar
  7. [15]
    S.T. KURODA-Scattering theory for differential operators I: Operator theory, Journ. Math. Soc. Japan, 25 (1973), p. 75–104; II: Self-adjoint elliptic operators, ibid. p. 222–234.zbMATHMathSciNetGoogle Scholar
  8. [16]
    C. MØLLER-General properties of the characteristic matrix in the theory of elementary particles, Danske Vid. Selsk. Mat.-Fys. Medd. 22 (1946), no. 19.Google Scholar

C. Méthodes stationnaires

  1. [17]
    L.D. FADDEEV-On the Friedrichs model in the perturbation theory of continuous spectrum, Trudy Math. Inst. Steklov, 73 (1964), p. 292–313 [en russe].zbMATHMathSciNetGoogle Scholar
  2. [18]
    K.O. FRIEDRICHS-On the perturbation of continuous spectra, Comm. Pure Appl. Math. 1 (1948), p. 361–406.zbMATHMathSciNetGoogle Scholar
  3. [19]
    J.S. HOWLAND-Banach space techniques in the perturbation theory of self-adjoint operators with continuous spectra, Journ. Math. Anal. and Appl., 20 (1967), p. 22–47.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [20]
    T. KATO et S.T. KURODA-Theory of simple scattering and eigenfunction expansions, in "Functional Analysis and Related Fields" (F.E. Browder éditeur), Springer, New York, 1970.Google Scholar
  5. [21]
    T. KATO et S.T. KURODA-The abstract theory of scattering, Rocky Mount. Journ. Math., 1 (1971), p. 127–171.zbMATHMathSciNetGoogle Scholar
  6. [22]
    S.T. KURODA-An abstract stationary approach to perturbation of continuous spectra and scattering theory, Journ. Math. Anal. and Appl., 20 (1967), p. 57–117.zbMATHMathSciNetGoogle Scholar
  7. [23]
    P.A. REJTO-On gentle perturbations, Comm. Pure Appl. Math., I: 16 (1963), p. 279–303; II: 17 (1964), p. 257–292.MathSciNetGoogle Scholar
  8. [24]
    P.A. REJTO-On partly gentle perturbations, Journ. Math. Anal. and Appl., I: 17 (1967), p. 453–462; II: 20 (1967), p. 145–187; III: 27 (1969), p. 21–67.MathSciNetGoogle Scholar

D. Equation de Schrödinger

  1. [25]
    S. AGMON-Spectral properties of Schrödinger operators, Actes Congrès Internat. Math. Nice, 1970, vol. 2, p. 679–684.Google Scholar
  2. [26]
    S. AGMON-Spectral properties of Schrödinger operators and scattering theory, Annali Scuola Norm. Sup. Pisa, Cl. Sci. II, 2 (1976), p. 151–218.MathSciNetGoogle Scholar
  3. [27]
    S. AGMON-Some new results in spectral and scattering theory of differential operators on Rn, Séminaire Goulaouic-Schwartz, Ecole Polytechnique, 1978.Google Scholar
  4. [28]
    S. AGMON et L. HÖRMANDER-Asymptotic properties of solutions of differential equations with simple characteristics, Journ. Anal. Math. 30 (1976), p. 1–38.zbMATHCrossRefGoogle Scholar
  5. [29]
    P. ALSHOLM et T. KATO-Scattering with long range potentials, in "Partial differential equations", Proc. Symp. Pure Math., vol. 23, Amer. Math. Soc., Providence, 1973.Google Scholar
  6. [30]
    W. AMREIN et V. GEORGESCU-On the characterization of bound states and scattering states in quantum mechanics, Helv. Phys. Acta, 46 (1973), p. 635–658.MathSciNetGoogle Scholar
  7. [31]
    A.M. BERTHIER et P. COLLET-Existence and completeness of the wave operators in scattering theory with momentum-dependent potentials, Journ. Funct. Anal., 26 (1977), p. 1–15.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [32]
    A.M. BERTHIER et P. COLLET-Wave operators for momentum dependent long range potentials, Ann. Inst. Henri Poincaré, série A, 26 (1977), p. 279–293.zbMATHMathSciNetGoogle Scholar
  9. [33]
    H. BREZIS et T. KATO-Remarks on the Schrödinger operator with singular complex potentials, à paraître.Google Scholar
  10. [34]
    P.J. DEIFT et B. SIMON-A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math., 30 (1977), p. 573–583.zbMATHMathSciNetGoogle Scholar
  11. [35]
    J. DOLLARD-Asymptotic convergence and the Coulomb interaction, Journ. Math. Phys. 5 (1964), p. 729–738.MathSciNetCrossRefGoogle Scholar
  12. [36]
    J. DOLLARD-Quantum mechanical scattering theory for short-range and Coulomb interaction, Rocky Mount. Journ. Math., 1 (1971), p. 5–88.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [37]
    V. ENSS-Asymptotic completeness for quantum mechanical potential scattering, I: Short range potentials, Comm. Math. Phys., 61 (1978), p. 285–291; II: Singular and long range potentials, à paraître aux Ann. Phys.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [38]
    L. HÖRMANDER-The existence of wave operators in scattering theory, Math. Zeit., 146 (1976), p. 69–91.zbMATHCrossRefGoogle Scholar
  15. [39]
    T. IKEBE-Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rat. Mech. Anal., 5 (1960), p. 1–34.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [40]
    J. JAUCH et I. ZINNES-The asymptotic condition for simple scattering systems, Nuovo Cimento, X Ser. 11 (1959), p. 553–567.MathSciNetGoogle Scholar
  17. [41]
    R.B. LAVINE-Absolute continuity of positive spectrum for Schrödinger operators with long range potentials, Journ. Funct. Anal., 12 (1973), p. 30–54.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [42]
    D. RUELLE-A remark on bound states in potential scattering theory, Nuovo Cimento, 61A (1969), p. 655–662.MathSciNetGoogle Scholar
  19. [43]
    B. SIMON-Geometric methods in multiparticle quantum systems, Comm. Math. Phys., 55 (1977), p. 259–274.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [44]
    B. SIMON-Phase space analysis of simple scattering systems, extension of some work of Enss, à paraître au Duke Math. Journ.Google Scholar

Référence supplémentaire

  1. [2 bis]
    L.D. FADDEEV-Mathematical aspects of the three body problem in quantum scattering theory, Israël program for scientific translation, 1965.Google Scholar

Copyright information

© N. Bourbaki 1980

Authors and Affiliations

  • Pierre Cartier

There are no affiliations available

Personalised recommendations