Advertisement

Holomorphic vector bundles on ℙn

  • Michael Schneider
Conference paper
  • 179 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 770)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    M. F. ATIYAH, N. J. HITCHIN, V. G. DRINFELD, Ju. MANIN-Construction of instantons, Physics Letters, 65 A (1978), 185–187.MathSciNetGoogle Scholar
  2. [2]
    M. F. ATIYAH, E. REES-Vector bundles on projective 3-space, Inventiones math., 35 (1976), 131–153.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    W. BARTH-Submanifolds of low codimension in projective space, Proc. I.C.M. Vancouver (1975), 409–413.Google Scholar
  4. [4]
    W. BARTH-Some properties of stable rank-2 vector bundles onn, Math. Ann., 226 (1977), 125–150.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. BARTH-Moduli of vector bundles on the projective plane, Inventiones math. 42 (1977), 63–91.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    W. BARTH-Stable vector bundles on3, some experimental data, Preprint 1978.Google Scholar
  7. [7]
    W. BARTH, G. ELENCWAJG-Concernant la cohomologie des fibrés algébriques stables surn(C). In Variétés Analytiques Compactes, Nice 1977, Lecture Notes in Math., 683 (1978), 1–24.zbMATHMathSciNetGoogle Scholar
  8. [8]
    W. BARTH, K. HULEK-Monads and moduli of vector bundles, Manuscripta math. 25(1978), 323–347.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    W. BARTH, A. vAN dE VEN-A decomposability criterion for algebraic 2-bundles on projective spaces, Inventiones Math., 25 (1974), 91–106.zbMATHCrossRefGoogle Scholar
  10. [10]
    W. BARTH, A. VAN DE VEN-On the geometry in codimension 2 of Grassmann manifolds, In classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math., 412 (1974), 1–35.zbMATHGoogle Scholar
  11. [11]
    A. BEILINSON-Coherent sheaves onN and problems of linear algebra, J. of functional analysis and its applications, 12 (1978), 68–69.zbMATHMathSciNetGoogle Scholar
  12. [12]
    V. G. DRINFELD, Ju. MANIN-On locally free sheaves over3 connected with Yang-Mills fields, Uspechi, 33 (1978), 165–166.zbMATHMathSciNetGoogle Scholar
  13. [13]
    V. G. DRINFELD, Ju. MANIN-J. Functional Analysis and its applications, 12(1978), 78–79.zbMATHMathSciNetGoogle Scholar
  14. [14]
    G. ELENCWAJG-Les fibrés uniformes de rang 3 sur2(C) sont homogènes, Math. Ann., 231 (1978), 217–227.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. ELENCWAJG-Des fibrés uniformes non homogènes, Preprint 1978, Nice.Google Scholar
  16. [16]
    D. FERRAND-Courbes gauches et fibrés de rang 2, C. R. Acad. Sci. Paris, 281 (1975), A 345–347.MathSciNetGoogle Scholar
  17. [17]
    D. GIESEKER-On the moduli of vector bundles on an algebraic surface, Ann. of Math., 106 (1977), 45–60.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    H. GRAUFERT, G. MÜLICH-Vektorbündel vom Rang 2 über dem n-dimensionalen komplex-projektiven Raum, Manuscripta math., 16 (1975), 75–100.MathSciNetCrossRefGoogle Scholar
  19. [19]
    H. GRAUERT, R. REMMERT-Zur Spaltung lokal-freier Garben über Riemannschen Flächen, Math. Z., 144 (1975), 35–43.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    H. GRAUERT, M. SCHNEIDER-Komplexe Unterräume und holomorphe Vektorraumbündel vom Rang zwei, Math. Ann., 230 (1977), 75–90.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. GROTHENDIECK-Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 79 (1956), 121–138.MathSciNetCrossRefGoogle Scholar
  22. [22]
    A. GROTHENDIECK-Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Exposé 149, Mai 1957, W. A. Benjamin-Addison-Wesley, New York, 1966.Google Scholar
  23. [23]
    R. HARTSHORNE-Varieties of small codimension in projective space, Bull. Amer. Math. Soc., 80 (1974), 1017–1032.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. HARTSHORNE-Stable vector bundles and instantons, Comm. Math. Phys., 59 (1978), 1–15.zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    R. HARTSHORNE-Stable vector bundles of rank 2 on3. Math. Ann., 238(1978), 229–280.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    R. HARTSHORNE-Algebraic vector bundles on projective spaces: a problem list, Preprint 1978.Google Scholar
  27. [27]
    G. HORROCKS-Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3), 14 (1964), 689–713.zbMATHMathSciNetGoogle Scholar
  28. [28]
    G. HORROCKS-A construction for locally free sheaves, Topology, 7 (1968), 117–120.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    G. HORROCKS-Letter to Mumford (1971).Google Scholar
  30. [30]
    G. HORROCKS-Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2), 18 (1978), 15–27.zbMATHMathSciNetGoogle Scholar
  31. [31]
    G. HORROCKS-Construction of bundles onn, Preprint 1978.Google Scholar
  32. [32]
    G. HORROCKS, D. MUMFORD-A rank 2 vector bundle on P4 with 15,000 symmetries, Topology, 12 (1973), 63–81.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    K. HULEK-Talk at Oberwolfach 1978.Google Scholar
  34. [34]
    W. HULSBERGEN-Vector bundles on the complex projective plane, Thesis, Leiden (1976).Google Scholar
  35. [35]
    S. G. LANGTON-Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2), 101 (1975), 88–110.zbMATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. E. LARSEN-On the topology of complex projective manifolds, Inventiones math., 19 (1973), 251–260.zbMATHCrossRefGoogle Scholar
  37. [37]
    J. LE POTIER-Fibrés stables de rang 2 sur2(C), Preprint 1978, Paris VII.Google Scholar
  38. [38]
    M. MARUYAMA-On a family of algebraic vector bundles, Number theory,algebraic geometry and commutative algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo (1973), 95–146.Google Scholar
  39. [39]
    M. MARUYAMA-Stable vector bundles on an algebraic surface, Nagoya Math. J., 58 (1975), 25–68.zbMATHMathSciNetGoogle Scholar
  40. [40]
    M. MARUYAMA-Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16 (1976), 627–637.zbMATHMathSciNetGoogle Scholar
  41. [41]
    M. MARUYAMA-Moduli of stable sheaves, I. J. Math. Kyoto Univ., 17 (1977), 91–126.zbMATHMathSciNetGoogle Scholar
  42. [42]
    M. MARUYAMA-Moduli of stable sheaves, II. J. Math. Kyoto Univ., to appear.Google Scholar
  43. [43]
    M. MARUYAMA-Boundedness of semi-stable sheaves of small ranks, Preprint 1978.Google Scholar
  44. [44]
    G. MÜLICH-Familien holomorpher Vektorraumbündel über1 und unzerlegbare holomorphe 2-Bündel über der projektiven Ebene, Thesis, Göttingen, 1974.Google Scholar
  45. [45]
    A. OGUS-On the formal neighborhood of a subvariety of projective space, Amer. J. Math., 97 (1976), 1085–1107.zbMATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    E. REES-Some rank two bundles onn(C) whose Chern classes vanish, In Variétés analytiques Compactes, Nice 1977, Lecture Notes in Math., 683 (1978), 25–28.zbMATHMathSciNetGoogle Scholar
  47. [47]
    E. SATO-Uniform vector bundles on a projective space, J. Math. Soc. Japan, 28 (1976), 123–132.zbMATHMathSciNetGoogle Scholar
  48. [48]
    E. SATO-On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties, J. Math. Kyoto Univ., 17 (1977), 127–150.zbMATHMathSciNetGoogle Scholar
  49. [49]
    J.-P. SERRE-Sur les modules projectifs, Séminaire Dubreil-Pisot, (1960/61), Exposé 2.Google Scholar
  50. [50]
    M. SCHNEIDER-Mannigfaltigkeiten der Codimension zwei im projektiven Raum, Private Notes.Google Scholar
  51. [51]
    R. L. E. SCHWARZENBERGER-Vector bundles on algebraic surfaces, Proc. London Math. Soc. (3), 11 (1961), 601–622.zbMATHMathSciNetGoogle Scholar
  52. [52]
    R. L. E. SCHWARZENBERGER-Vector bundles on the projective plane, Proc. London Math. Soc. (3), 11 (1961), 623–640.zbMATHMathSciNetGoogle Scholar
  53. [53]
    R. L. E. SCHWARZENBERGER-Appendix I of Topological Methods in Algebraic Geometry by F. Hirzebruch, Springer 1966.Google Scholar
  54. [54]
    L. SMITH-Complex 2-plane bundles over CP(n), Manuscripta Math., 24 (1978), 221–228.zbMATHMathSciNetCrossRefGoogle Scholar
  55. [55]
    R. SWITZER-Complex 2-plane bundles over complex projective space, Preprint 1978, Göttingen.Google Scholar
  56. [56]
    F. TAKEMOTO-Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47(1972), 29–48.zbMATHMathSciNetGoogle Scholar
  57. [57]
    H. TANGO-On (n−1)-dimensional projective spaces contained in the Grassmann variety Gr(n, 1), J. Math. Kyoto Univ., 14 (1974), 415–460.zbMATHMathSciNetGoogle Scholar
  58. [58]
    H. TANGO-An example of indecomposable vector bundle of rank n−1 on Pn, J. Math. Kyoto Univ., 16(1976), 137–141.zbMATHMathSciNetGoogle Scholar
  59. [59]
    H. TANGO-On morphisms from Projective spacen to the Grassmann variety Gr(n,d), J. Math. Kyoto Univ., 16(1976), 201–207.zbMATHMathSciNetGoogle Scholar
  60. [60]
    A. THOMAS-Almost complex structures on complex projective spaces, Trans. Amer. Math. Soc., 193 (1974), 123–132.zbMATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    A. N. TJURIN-Finite dimensional vector bundles over infinite varieties, Math. U.S.S.R. Isvestija 10 (1976), 1187–1204.CrossRefGoogle Scholar
  62. [62]
    G. TRAUTMANN-Moduli for bundles onn, Preprint 1978, Kaiserslautern.Google Scholar
  63. [63]
    A. VAN DE VEN-On uniform vector bundles, Math. Ann., 195(1972), 245–248.zbMATHMathSciNetCrossRefGoogle Scholar
  64. [64]
    A. VAN DE VEN, J. VOGELAAR-A construction for vector bundles of rank 3, Preprint 1978, Leiden.Google Scholar

Copyright information

© N. Bourbaki 1980

Authors and Affiliations

  • Michael Schneider

There are no affiliations available

Personalised recommendations