Advertisement

Thermodynamics, statistical mechanics and random fields

  • Leonard Gross
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 929)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] M. Aizenman, S. Goldstein, J.L. Lebowitz, Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit, Comm. Math. Phys. 62 (1978) 279.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B] Boltzmann, Analytical proof of the second law from the theorems on equilibrium of energy. Wien Ber. 632 (1871), p. 712zbMATHGoogle Scholar
  3. [Br] S.G. Brush, The Kind of Motion we Call Heat, Books 1 and 2 in Studies in Statistical Mechanics, E.W. Montroll and J.L. Lebowitz, Eds., North Holland Pub. Co., Amsterdam, 1976.Google Scholar
  4. [C] H.B. Callen, Thermodynamics, John Wiley and Sons, New York, 1960.zbMATHGoogle Scholar
  5. [D 1] R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theory of Probability and its Applications, 13 (1968) 197–224.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [D 2]-, Prescribing a system of random variables by conditional distributions, Theory of Prob. and its Applic. 15 (1970), 458–486.CrossRefzbMATHGoogle Scholar
  7. [DT] R.L. Dobrushin and B. Tirozzi, The central limit theorem and the problem of equivalence of ensembles, Commun. Math. Phys. 54 (1977) 173–192.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Do] Domb and Green, Phase Transitions and Critical Phenomena, Vols. 1 to 6 Academic Press, New York, 1972–1976.Google Scholar
  9. [E] P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Cornell Univ. Press, Ithaca, N.Y., 1959.zbMATHGoogle Scholar
  10. [Fa] G. Falk and H. Jung, Axiomatik der Thermodynamik, Handbuch der Physik III/2, 1959.Google Scholar
  11. [Fi] M.E. Fisher, The theory of equilibrium critical phenomena, Reports on Progress in Physics, Vol. 30 (1967) 615–730.CrossRefGoogle Scholar
  12. [Fr] J. Fröhlich, The pure phases (harmonic functions) of generalized processes or: mathematical physics of phase transitions and symmetry breaking, Bull. A.M.S. 84 (1978) 165–193.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Ga] G. Gallavotti and S. Miracle-Sole, Correlation functions of a lattice system, Commun. Math. Phys. 7 (1968) 274–288.MathSciNetCrossRefGoogle Scholar
  14. [Gi] R. Giles, Mathematical Foundations of Thermodynamics, The MacMillan Co., New York, N.Y., 1964.zbMATHGoogle Scholar
  15. [Gr 1] L. Gross, Decay of correlations in classical lattice models at high temperature, Commun. Math. Phys. 68 (1979) 9–27.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Gr 2]-, Absence of second order phase transitions in the Dobrushin uniqueness region, J. Statistical Physics, 25 (1981) 57–72.MathSciNetCrossRefGoogle Scholar
  17. [Ia] D. Iagolnitzer and B. Souillard, On the analyticity in the potential in classical statistical mechanics, Commun. Math. Phys. 60 (1978) 131–152.MathSciNetCrossRefGoogle Scholar
  18. [Is 1] R.B. Israel, High temperature analyticity in classical lattice systems, Commun. Math. Phys. 50 (1976) 245–257.MathSciNetCrossRefGoogle Scholar
  19. [Is 2] R.B. Israel, Convexity in the Theory of Lattice Gases, Princeton Univ. Press, 1979.Google Scholar
  20. [K] A.I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, 1949.Google Scholar
  21. [Ku] H. Kunz, Analyticity and clustering of unbounded spin systems, Comm. in Math. Phys. 59 (1978) 53–69.MathSciNetCrossRefGoogle Scholar
  22. [L] O.E. Lanford III, Entropy and equilibrium states in classical statistical mechanics, in Lecture Notes in Physics, Vol. 20, Statistical Mechanics and Mathematical Problems, Ed. A. Lenard, Springer-Verlag, N.Y., 1973.Google Scholar
  23. [ML] A. Martin-Löf, Statistical Mechanics and the Foundations of Thermodynamics, Lecture Notes in Physics, Vol. 101, Springer-Verlag, N.Y., 1979.Google Scholar
  24. [Mi] R.A. Minlos, Lectures on Statistical Physics, Russian Mathematical Surveys, 23 (1968), no. 1 (English Translation) 137–194.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Mis] L. Mistura, Change of variables in thermodynamics, Il Nuovo Cimento, 51B, N. 1 (1979) 125–146.MathSciNetCrossRefGoogle Scholar
  26. [Pi] S.A. Pirogov and Ya.G. Sinai, Phase diagrams of classical lattice systems, Theoretical and Mathematical Physics 25 (1975) 358–369 (in Russian).MathSciNetCrossRefGoogle Scholar
  27. [Pr] C. Preston, Random Fields, Lecture Notes in Mathematics No. 534, Springer-Verlag, N.Y., 1976.CrossRefzbMATHGoogle Scholar
  28. [Rk] Rockafellar, R.T., Conjugate duality and optimization, S.I.A.M. Regional Conference Series in App. Math. No. 16 (1974) (especially pages 13–16).Google Scholar
  29. [Ro] D. Roller, The early development of the concepts of temperature and heat, Harvard Univ. Press, 1950.Google Scholar
  30. [R 1] D. Ruelle, Statistical Mechanics, W.A. Benjamin, Inc., N.Y., 1969.zbMATHGoogle Scholar
  31. [R 2]-, Thermodynamic Formalism, Addison-Wesley Pub. Co, Reading, Mass., 1978.zbMATHGoogle Scholar
  32. [Se 1] J. Serrin, The concepts of thermodynamics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations de la Penha and Medeiros (Eds.), North-Holland Pub. Co., 1978.Google Scholar
  33. [Se 2] J. Serrin, Conceptual Analysis of the Classical Second Laws of Thermodynamics, Arch. Rat. Mech., 1980.Google Scholar
  34. [Se 1] J. Serrin, Foundations of Classical Thermodynamics, Univ. of Chicago, Dept. of Math., Lecture Notes in Mathematics, 1975.Google Scholar
  35. [Si 1] B. Simon, A remark on Dobrushin's uniqueness theorem, Commun. Math. Phys. 68 (1979) 183–185.CrossRefzbMATHGoogle Scholar
  36. [Si 2] B. Simon, The Statistical Mechanics of Lattice Gases, to appear.Google Scholar
  37. [Si 3]-, The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton, N.J., 1974.Google Scholar
  38. [Sp] F. Spitzer, Introduction aux processus de Markov a parametres dans Zv, in Lecture Notes in Mathematics, 390, Springer-Verlag New York.Google Scholar
  39. [Th] R.L. Thompson, Equilibrium States in Thin Energy Shells, Memoirs Amer. Math. Soc. 150 (1974).Google Scholar
  40. [T] L. Tisza, Generalized Thermodynamics, M.I.T. Press, Cambridge, Mass., 1966.zbMATHGoogle Scholar
  41. [V] L.N. Vasershtein, Markov processes over denumerable products of spaces, describing large systems of automata, Problems in the Transmission of Information, Vol. 5, No. 3 (1969) 64–72 (English Translation).MathSciNetGoogle Scholar
  42. [W] F.T. Wall, Chemical Thermodynamics, W.H. Freeman and Co., 1957.Google Scholar
  43. [Z 1] M.W. Zemansky, Heat and Thermodynamics, 4th Edition, McGraw-Hill Book Co., New York, 1957.zbMATHGoogle Scholar
  44. [Z 2]-, Heat and Thermodynamics, 5th Edition, McGraw-Hill Book Co., New York, 1968. *** DIRECT SUPPORT *** A00J4403 00003zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Leonard Gross
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations