Advertisement

On cylindric-relativized set algebras

  • H. Andréka
  • I. Németi
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 883)

Keywords

Choice Function Regular Element Abstract Characterization Unit Versus Finite Dimensional Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Andréka, H., Universal Algebraic Logic, Dissertation, Hungar. Acad. Sci. Budapest 1975. (In Hungarian)Google Scholar
  2. [AGN1]
    Andréka, H. Gergely, T. and Németi, I., Purely algebraical construction of first order logics, Publications of Central Res. Inst. for Physics, Hungar. Acad. Sci., No KFKI-73-71, Budapest, 1973.Google Scholar
  3. [AGN2]
    Andréka, H. Gergely, T. and Németi, I., On universal algebraic constructions of logics, Studia Logica XXXVI, 1–2(1977), pp. 9–47.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [AN1]
    Andréka, H. and Németi, I., A simple, purely algebraic proof of the completeness of some first order logics, Algebra Universalis 5 (1975), pp. 8–15.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [AN2]
    Andréka, H. and Németi, I., On universal algebraic logic and cylindric algebras, Bulletin of the Section of Logic, Vol. 7, No. 4 (Wroclaw, Dec. 1978), pp. 152–158.MathSciNetzbMATHGoogle Scholar
  6. [AN3]
    Andréka, H. and Németi, I., On universal algebraic logic, Preprint, 1978.Google Scholar
  7. [AN4]
    Andréka, H. and Németi, I., The class of neat-reducts of cylindric algebras is not a variety but is closed w.r.t. HP, Math. Inst. Hungar. Acad. Sci., Preprint No 14/1979, Budapest 1979. Submitted to the J. of Symb. Logic.Google Scholar
  8. [AN5]
    Andréka, H. and Németi, I., Neat reducts of varieties, Studia Sci. Math. Hungar. 13(1978), pp. 47–51.MathSciNetzbMATHGoogle Scholar
  9. [AN6]
    Andréka, H. and Németi, I., ICrs is a variety and ICrs reg is a quasivariety but not a variety, Preprint Math. Inst. Hungar. Acad. Sci., Budapest, 1980.Google Scholar
  10. [AN7]
    Andréka, H. and Németi, I., On the number of generators of cylindric algebras, Preprint, Math. Inst. Hungar. Acad. Sci., Budapest 1979.zbMATHGoogle Scholar
  11. [AN8]
    Andréka, H. and Németi, I., Dimension complemented and locally finite dimensional cylindric algebras are elementarily equivalent, Algebra Universalis, to appear.Google Scholar
  12. [AN9]
    Andréka, H. and Németi, I., Varieties definable by schemes of equations, Algebra Universalis 11 (1980), pp. 105–116.Google Scholar
  13. [CK]
    Chang, C.C. and Keisler, H.J., Model Theory, North-Holland, 1973.Google Scholar
  14. [G]
    Gergely, T., Algebraic representation of language hierarchies, Working Paper, Research Inst. for Applied Computer Sciences (Hungary), Budapest 1981. To appear in Acta cybernetica.zbMATHGoogle Scholar
  15. [H]
    Hausdorff, F., Über Zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6(1936), pp. 18–19.zbMATHGoogle Scholar
  16. [HMT]
    Henkin, L. Monk, J.D. and Tarski, A., Cylindric Algebras Part I, North-Holland, 1971.Google Scholar
  17. [HMTI]
    Henkin, L. Monk. J.D. and Tarski, A., Cylindric set algebras and related structures, this volume.Google Scholar
  18. [M]
    Monk, J.D., Mathematical Logic, Springer Verlag, 1976.Google Scholar
  19. [M1]
    Monk, J.D., Nonfinitizability of classes of representable cylindric algebras, The J. Symb. Logic 34(1969), pp. 331–343.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [N]
    Németi, I., Connections between cylindric algebras and initial algebra semantics of CF languages, In: Mathematical Logic in Computer Science (Dömölki, B. Gergely, T. eds.) Colloq. Math. Soc. J. Bolyai Vol. 26, North-Holland, 1981, pp. 561–606.Google Scholar
  21. [N1]
    Németi, I., Some constructions of cylindric algebra theory applied to dynamic algebras of programs, Comput. Linguist. Comput. Lang. (Budapest) Vol. XIV(1980), pp. 43–65.MathSciNetzbMATHGoogle Scholar
  22. [P3]
    Pálfy, P.P., On the chromatic number of certain graphs, Math. Inst. Hungar. Acad. Sci., Preprint No 17/1980. To appear in Discrete Mathematics.Google Scholar
  23. [S]
    Sikorski, R., Boolean Algebras, Springer Verlag, 1960.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Andréka
  • I. Németi

There are no affiliations available

Personalised recommendations