Advertisement

Cylindric set algebras and related structures

  • L. Henkin
  • J. D. Monk
  • A. Tarski
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 883)

Keywords

Unit Element Finite Subset Subdirect Product Cartesian Space Finite Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AN1]
    Andréka, H. and Németi, I., A simple, purely algebraic proof of the completeness of some first order logics, Alg. Univ. 5(1975), 8–15.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AN2]
    Andréka, H. and Németi, I., On problems in cylindric algebra theory, Abstracts Amer. Math. Soc. 1(1980), 588.zbMATHGoogle Scholar
  3. [AN3]
    Andréka, H. and Németi, I., On cylindric-relativized set algebras, this vol.Google Scholar
  4. [AN4]
    Andréka, H. and Németi, I., Finite cylindric algebras generated by a single element, Finite algebra and multivalved logic (Proc. Coll. Czeged), eds. B. Csákány, I. Rosenberg, Colloq. Math. Soc. J. Bolyai vol. 28, North-Holland, to appear.Google Scholar
  5. [CK]
    Chang, C.C. and Keisler, H.J., Model theory (second edition), North-Holland 1978, xii+554 pp.Google Scholar
  6. [D]
    Daigneault, A., On automorphisms of polyadic algebras, Trans. Amer. Math. Soc. 112(1964), 84–130.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [De]
    Demaree, D., Studies in algebraic logic, Doctoral Dissertation, Univ. of Calif., Berkeley 1970, 96pp.Google Scholar
  8. [EFL]
    Erdös, P., Faber, V. and Larson, J., Sets of natural numbers of positive density and cylindric set algebras of dimension 2, to appear, Alg. Univ.Google Scholar
  9. [H]
    Hanf, W., The Boolean algebra of logic, Bull. Amer. Math. Soc. 8(1975), 587–589.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [HM]
    Henkin, L. and Monk, J.D., Cylindric set algebras and related structures, Proc. of the Tarski Symposium, Proc. Symp. Pure Math. 25(1974), Amer. Math. Soc., 105–121.Google Scholar
  11. [HMT]
    Henkin, L., Monk, J.D., and Tarski, A., Cylindric Algebras, Part I, North-Holland (1971), 508pp.Google Scholar
  12. [HR]
    Henkin, L. and Resek, D., Relativization of cylindric algebras, Fund. Math. 82(1975), 363–383.MathSciNetzbMATHGoogle Scholar
  13. [HT]
    Henkin, L. and Tarski, A. Cylindric algebras, Lattice theory, Proc. Symp. pure math. 2(1961), Amer. Math. Soc., 83–113.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [K]
    Ketonen, J., The structure of countable Boolean algebras, Ann. Math. 108(1978), 41–89.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Ko]
    Koppelberg, S., Homomorphic images of σ-complete Boolean algebras, Proc. Amer. Math. Soc. 51(1975), 171–175.MathSciNetzbMATHGoogle Scholar
  16. [L]
    Laver, R., Saturated ideals and nonregular ultrafilters, to appear.Google Scholar
  17. [Ma]
    Magidor, M., On the existence of nonregular ultrafilters and the cardinality of ultrapowers, Trans. Amer. Math. Soc. 249 (1979), 97–111.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Ml]
    Monk, J.D., Singulary cylindric and polyadic equality algebras, Trans. Amer. Math. Soc. 112(1964), 185–205.MathSciNetzbMATHGoogle Scholar
  19. [M2]
    Monk, J.D., Model-theoretic methods and results in the theory of cylindric algebras, The Theory of Models, Proc. 1963 Symp., North-Holland, 238–250.Google Scholar
  20. [Md]
    Maddux, R., Relation algebras and neat embeddings of cylindric algebras, Notices Amer. Math. Soc. 24(1977), A–298.Google Scholar
  21. [My]
    Myers, D., Cylindric algebras of first-order languages, Trans. Amer. Math. Soc. 216(1976), 189–202.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [N]
    Németi, I., Connections between cylindric algebras and initial algebra semantics of CF languages, Mathematical logic in computer science, eds. B Dömölki, T. Gergely, Colloq. Math. Soc. J. Bolyai, vol. 26 North-Holland (1981), 561–606.Google Scholar
  23. [S]
    Sobociński, B., Solution to the problem concerning the Boolean bases for cylindric algebras, Notre Dame J. Formal Logic 13(1972), 529–545.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [TV]
    Tarski, A. and Vaught, R.L., Arithmetical extensions of relational systems, Compos. Math. 13(1957), 81–102.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • L. Henkin
  • J. D. Monk
  • A. Tarski

There are no affiliations available

Personalised recommendations