Skip to main content

Efficient reliable rational interpolation

  • Part I: Invited Speakers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 888))

Abstract

It is shown that Thiele fractions and Thiele-Werner fractions always provide representations for the solution of a given soluble, rational interpolation problem. A strategy which guarantees the accuracy of construction of Thiele-Werner interpolants is reviewed. Some difficulties in the selection of best library algorithms for rational interpolation are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, H., (1980), “Ein verall gemeinerter Kettenbruch—Algorithmus zur rationalen Hermite—Interpolation”, Num. Math. 36, 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, G.A., Jr., (1975), “Essentials of Padé approximants”, Academic Press, N.Y..

    MATH  Google Scholar 

  • Bultheel, A., (1979), “Recursive algorithms for the Padé table: two approaches” in “Padé approximation and its applications”, ed. L. Wuytack, Springer-Verlag, 211–230.

    Google Scholar 

  • Gallucci, M.A. and Jones, W.B., (1976), “Rational approximations corresponding to Newton series (Newton-Padé approximants)”, J. Approx. Theory 17, 366–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Geddes, K.O., (1979), “Symbolic computation of Padé approximants”, A.C.M. Trans. Math. Software 5, 218–233.

    Article  MathSciNet  MATH  Google Scholar 

  • Graves-Morris, P.R., (1980), “Practical, reliable, rational interpolation”, J. Inst. Maths. Applics., 25, 267–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Graves-Morris, P.R. and Hopkins, T.R., (1978), “Reliable rational interpolation”, Kent preprint; Num. Math., to be published.

    Google Scholar 

  • Maehly, H. and Witzgall, Ch. (1960), “Tschebyscheff-Approximationen in kleinen Intervallen II”, Num. Math. 2, 293–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Meinguet, J., (1970), “On the solubility of the Cauchy interpolation problem” in “Approximation theory”, ed. A. Talbot, Academic Press, London, 137–163.

    Google Scholar 

  • Padé, H., (1892), “Sur la représentation approchée d'une fonction par des fractions rationelles”, Ann. Ecole Norm. 9 suppl., 1–93.

    Google Scholar 

  • Peters, G. and Wilkinson, J.H., (1971), “Practical problems arising in the solution of polynomial equations”, J. Inst. Math. Applics., 8, 16–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoer, J., (1961), “Uber zwei Algorithmen zur Interpolation mit rationalen Funktionen”, Num. Math. 3, 285–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Thacher, H.C. and Tukey, J.W., (1960) “Rational interpolation made easy by a recursive algorithm”, unpublished.

    Google Scholar 

  • Warner, D.D., (1974), “Hermite interpolation with rational functions”, Univ. of California thesis.

    Google Scholar 

  • Werner, H., (1963), “Rationale Tschebyscheff-Approximation, Eigenwerttheorie und Differenzenrechnung”, Archive for Radional Mechanics and Analysis 13, 330–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, H., (1979), “A reliable method for rational interpolation” in “Padé approximation and its applications”, ed. L. Wuytack, Springer-Verlag, 257–277.

    Google Scholar 

  • Werner, H., (1980). “Ein Algorithmus zur rationalen Interpolation” in “Numerische Methoden der Approximationtheorie 5”, eds. L. Collatz, G. Meinardus and H. Werner”, Birkhäuser, 319–337.

    Google Scholar 

  • Werner, H. and Schaback, R., (1972), “Praktische Mathematik II”, Springer-Verlag, p. 71.

    Google Scholar 

  • Wilkinson, J.H., (1963), “Rounding errors in algebraic processes”, Notes in applied science 32, H.M.S.O. London, chap. 1.

    MATH  Google Scholar 

  • Wuytack, L., (1974), “On some aspects of the rational interpolation problem”, SIAM J. Num. Anal. 11, 52–60.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. G. de Bruin H. van Rossum

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Srpinger-Verlag

About this paper

Cite this paper

Graves-Morris, P.R. (1981). Efficient reliable rational interpolation. In: de Bruin, M.G., van Rossum, H. (eds) Padé Approximation and its Applications Amsterdam 1980. Lecture Notes in Mathematics, vol 888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0095575

Download citation

  • DOI: https://doi.org/10.1007/BFb0095575

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11154-2

  • Online ISBN: 978-3-540-38606-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics