Parallel molecular dynamics simulations of biomolecular systems

  • Alexander Lyubartsev
  • Aatto Laaksonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1541)


We describe a general purpose parallel molecular dynamics code, for simulations of arbitrary mixtures of flexible molecules in solution. The program allows us to simulate molecular systems described by standard force fields like AMBER, GROMOS or CHARMM, containing terms for short-range interactions of the Lennard-Jones type, electrostatic interactions, covalent bonds, covalent angles and torsional angles and a few other optional terms. The state-of-the-art molecular dynamics techniques are implemented: constant-temperature and constant-pressure simulations, optimized Ewald method for treatment of electrostatic forces, double time step algorithm for separate integration of fast and slow motions. The program is written in standard Fortran 77 and uses MPI library for communications between nodes. The scalable properties of the program do not depend on the complexity of the studied system and are determined mainly by the hardware and communication speed. Examples of a few molecular systems differing by the composition will be given: Ionic water solutions, large DNA fragments in water solution with counter ions, a phospholipid membrane system.


parallel algorithms molecular dynamics computer simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Scholar
  2. 2.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A.: An All Atom Force Field for Simulations of Proteins and Nucleic Acids, J. Comput. Chem. 7 (1986) 230–252.CrossRefGoogle Scholar
  3. 3.
    MacKerell, A.D., Wiorkiewicz-Kuczera, J., Karplus, M.: An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids, J. Am. Chem. Soc. 117 (1995) 11946–11970.CrossRefGoogle Scholar
  4. 4.
    Tironi, I.G., Sperb, R., Smith, P.E., van Gunsteren, W.F.: A Generalized Reaction Field Method for Molecular Dynamics Simulations. J. Chem. Phys., 102 (1995) 5451–5458.CrossRefGoogle Scholar
  5. 5.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids, Clarendon: Oxford, 1987MATHGoogle Scholar
  6. 6.
    Darden, T., York, D., Pedersen, L.: Particle Mesh Ewald: A NlnN Method for Ewald Sums in Large Systems, J. Chem. Phys., 98 (1993) 10089–10092.CrossRefGoogle Scholar
  7. 7.
    Martyna, G.I., Tuckerman, M.E., Tobais, D.J., Klein, M.L.: Explicit Reversible Integrators for Extended Systems Dynamics, Mol. Phys., 87 (1996) 1117–1157.CrossRefGoogle Scholar
  8. 8.
    Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible Multiple Time Scale Molecular Dynamics, J. Chem. Phys., 97 (1992) 1990–2001.CrossRefGoogle Scholar
  9. 9.
    Lyubartsev, A.P., Laaksonen, A.: Concentration Effects in Aqueous NaCl Solutions. A Molecular Dynamics Simulations. J. Phys. Chem., 100 (1996) 16410–16418.CrossRefGoogle Scholar
  10. 10.
    Lyubartsev, A.P., Laaksonen, A.: Molecular Dynamics Simulations of DNA in Presence of Different Counterions. J. Biomolec. Structure and Dynamics (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexander Lyubartsev
    • 1
  • Aatto Laaksonen
    • 1
  1. 1.Department of Physical Chemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations