Advertisement

An embarrassingly parallel ab initio MD method for liquids

  • Fredrik Hedman
  • Aatto Laaksonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1541)

Abstract

A method to perform embarrassingly parallel ab initio molecular dynamics simulations of liquids on Born-Oppenheimer surfaces is described. It uses atomic energy gradient forces at an arbitrary level of quantum chemical methodology. The computational scheme is implemented with an MD program interfaced to a quantum chemistry package. Parallelization is done using the replicated data method.

Scaling results for up to 96 processors on an SP2 are presented. Results from simulations of liquid water at the ab initio SCF-MO Hartree-Fock level using single and double zeta basis function sets are compared with experimental radial distribution functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Stone and M. Alderton. Distributed multipole analysis-methods and applications. Molecular Physics, 56:1047–1064, 1985.CrossRefGoogle Scholar
  2. 2.
    Fredrik Hedman and Aatto Laaksonen. A parallel quantum mechanical md simulation of liquids. Molecular Simulation, 20:265–284, 1998.Google Scholar
  3. 3.
    A. Laaksonen. Computer simulation package for liquids and solids with polar interactions. I. McMOLDYN/H20: Aqueous systems. Computer Physics Communications, 42:271, 1986.CrossRefGoogle Scholar
  4. 4.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Peterson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanaykkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzales, and J.A. Pople. Gaussian 94, (revision b2), 1995. Gaussian, Inc., Pittsburgh, PA.Google Scholar
  5. 5.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, Jr.: The general atomic and molecular electronic structure system. Journal of Computational Chemsitry, 14:1347–1363, 1993.CrossRefGoogle Scholar
  6. 6.
    S. Nóse. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52:255–268, 1984.CrossRefGoogle Scholar
  7. 7.
    W.G. Hoover. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31:1695–1697, 1985.CrossRefGoogle Scholar
  8. 8.
    A.K. Soper and M.G. Phillips. A determination of the structure of water at 25°C. Journal of Chemical Physics, 107:47–60, 1986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Fredrik Hedman
    • 1
  • Aatto Laaksonen
    • 2
  1. 1.Parallelldatorcentrum (PDC)Royal Institute of TechnologyStockholmSweden
  2. 2.Department of Physical Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations