Advertisement

Hyper-rectangle selection strategy for parallel adaptive numerical integration

  • Raimondas Čiegis
  • Ramūnas Šablinskas
  • Jerzy Waśniewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1541)

Abstract

In this paper we consider the problem of numerical integration of multidimensional integrals. A new hyper-rectangle selection strategy is proposed for the implementation of globally adaptive parallel quadrature algorithms. The well known master-slave parallel algorithm prototype is used for the realization of the algorithm. Numerical results on the SP2 computer and on a cluster of workstations are reported. A test problem where the integrand function has a strong corner singularity is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bull, J.M., Freeman, T.L.: Parallel Gloabally Adaptive Algorithms for Multidimensional Integration. Appl. Numer. Mathem. 19 (1995) 3–16MATHCrossRefGoogle Scholar
  2. 2.
    Čiegis, R., Šablinskas, R., Waśniewski, J.: Numerical Integration on Distributed Memory Parallel Systems. In: Bubak, M., Dongarra, J., Waśniewski, J. (eds.): Recent Advances in PVM and MPI. Lecture Notes in Computer Science, Vol. 1332. Springer-Verlag, Berlin Heidelberg New York (1997) 329–336Google Scholar
  3. 3.
    Genz, A.C., Malik, A.A.: Remarks on Algorithm 006: an Adaptive Algorithm for Numerical Integration Over an N-dimensional Rectangular Region. J. Comput. Appl. Math. 6 (1980) 295–302MATHCrossRefGoogle Scholar
  4. 4.
    Keister, B.D.: Multidimensional Quadrature Algorithms. Computers in Physics 10 (1996) 119–122CrossRefGoogle Scholar
  5. 5.
    Miller, V.A., Davis, G.J.: Adaptive Quadrature on a Message Passing Multiprocessor. J. Parallel Distributed Comput. 14 (1992) 417–425MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Raimondas Čiegis
    • 1
  • Ramūnas Šablinskas
    • 2
  • Jerzy Waśniewski
    • 3
  1. 1.Institute of Mathematics and InformaticsVilniusLithuania
  2. 2.Vytautas Magnus UniversityKaunasLithuania
  3. 3.The Danish Computing Centre for Research and Education UNI-CLyngbyDenmark

Personalised recommendations