An interpretation for the conditional belief function in the theory of evidence

  • Mieczyslaw A. Klopotek
  • Sławomir T. Wierzchoń
Communications 6B Knowledge Representation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1609)


The paper provides a frequency-based interpretation for conditional belief functions that overcomes the well-formedness problem of DST belief networks by identifying a class of conditional belief functions for which well-formedness is granted.

Key words

Knowledge Representation and Integration Soft Computing evidence theory graphoidal structures conditional belief functions well-formedness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bendjebbour A., Pieczynski W.: Traitement du Signal, Vol. 14, No. 5, 1997, pp. 453–464.MATHGoogle Scholar
  2. 2.
    Dempster A.P.: Upper and lower probabilities induced by a multi-valued mapping, Ann. Math. Stat. 38 (1967), 325–339MATHMathSciNetGoogle Scholar
  3. 3.
    DromignyBadin A, Rossato S, Zhu Y.M.: Radioscopic and ultrasonic data fusion via the evidence theory, Traitement du Signal, Vol. 14, No. 5, 1997, pp. 499–510.Google Scholar
  4. 4.
    Itoh M., Inagaki T.: Evidential theoretic revision of beliefs under a mixerd strategy for safety-control of a large-complex plant. Transactions of the Society of Instrumental and Control Engineering, Vol. 34, no. 5, 1998, pp. 415–421Google Scholar
  5. 5.
    Kaempke T.: About assessing and evaluating uncertain information within the theory of evidence, Decision Support Systems 4:433–439, 1988CrossRefGoogle Scholar
  6. 6.
    Kłopotek M.A., Matuszewski A., Wierzchoń S.T.: Overcoming negative-valued conditional belief functions when adapting traditional knowledge acquisition tools to Dempster-Shafer Theory, Proc. CESA’96 IMACS Multiconference (Conference on Expert System Applications), Lille-France, 9–12 July 1996, Vol. 2, pp. 948–953.Google Scholar
  7. 7.
    Kłopotek M.A.: Non-Destructive Sample Generation From Conditional Belief Functions. [in:]: Z. Bubnicki, A. Grzech eds: Proc. 13th International Conference on Systems Science. September 15–18, 1998, Wrocław. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1998, Vol. I, pp 115–120.Google Scholar
  8. 8.
    Kłopotek M.A.: Methods of Identification and Interpretations of Belief Distributions in the Dempster-Shafer Theory (in Polish). Publisher: Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1998, ISBN 83-900820-8-x.Google Scholar
  9. 9.
    Kłopotek M.A.: On (Anti) Conditional Independence in Dempster-Shafer Theory. Journal Mathware and Softcomputing 5 (1998) 1, 69–89.Google Scholar
  10. 10.
    Kłopotek M.A.: Beliefs in Markov Trees-From Local Computations to Local Valuation. [in:] R. Trappl, Ed.: Cybernetics and Systems Research, Proc. 12th European Meeting on Cybernetics and System Research, Vienna 5–8 April 1994, World Scientific Publishers, Vol. 1. 351–358.Google Scholar
  11. 11.
    Moral S, Wilson N. Importance sampling Monte-Carlo algorithm for the calculation of Dempster-Shafer belief. Proc. 6th Int. Conf. IPMU’96, Granada 1–5.7.1996, Vol. III, pp. 1337–1344Google Scholar
  12. 12.
    Pagac D, Nebot E.M., Durrant-Whyte H: An evidential approach to map-building for autonomous vehicles. IEEE Transactions on Robotics & Automastion, vol. 14, no. 4, 1998, pp. 623–629.CrossRefGoogle Scholar
  13. 13.
    Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo CA, 1988.Google Scholar
  14. 14.
    Shafer G.: A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.MATHGoogle Scholar
  15. 15.
    Shenoy P.P.: Conditional Independence in Valuation-based Systems. International Journal of Approximate Reasoning, 10, 203–234, 1994.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Spirtes P., Glymour C., Scheines R.: Causation, Prediction and Search, Lecture Notes in Statistics 81, Springer-Verlag, 1993.Google Scholar
  17. 17.
    Studeny M.: Formal properties of conditional independence in different calculi of AI, Sonderforschungsbericht 343, Diskrete Strukturen in der Mathematik, Universität Bielefeld, 1994.Google Scholar
  18. 18.
    Wierzchoń S.T., Kłopotek M.A.: Modified Component Valuations in Valuation Based Systems As A Way to Optimize Query Processing. Journal of Intelligent Information Systems 9 (1997), 157–180.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Mieczyslaw A. Klopotek
    • 1
  • Sławomir T. Wierzchoń
    • 1
  1. 1.Institute of Computer SciencePolish Academny of SciencesWarsawPoland

Personalised recommendations