Perceptual convergence of discrete clamped fractal operator

  • Władysław Skarbek
Communications 5A Computer Vision
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1609)


While clamping the fractal operator to the grayscale range of values of the images preserves its contractivity, performing the rounding process to discrete levels spoils this property and the given iterative sequence is generally not convergent. In practice this lack of convergence is not observed by HVS (Human Visual System) on decoder’s output. We explain this phenomenon by presenting a strict notion of the perceptual convergence at the given threshold. It is used to prove that any iterative sequence for a fractal operator which is contractive in l norm with contractivity c *<1, after clamping and rounding to integer levels, is perceptually convergent at the threshold τ≥1/(1−c *).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnsley, M.F.: Fractals everywhere. Addison Wesley, Reading, MA (1988)MATHGoogle Scholar
  2. 2.
    Barnsley, M.F., Hurd, L.P.: Fractal image compression. AK Peters. Ltd, Wellesley, MA (1993)MATHGoogle Scholar
  3. 3.
    Dugundi, J., Granas, A.: Fixed point theory. Polish Scientific Publishers, Warszawa (1982)Google Scholar
  4. 4.
    Fisher, Y. ed.: Fractal image compression, Theory and Applications. Springer Verlag, New York (1995)Google Scholar
  5. 5.
    Jacquin, A.E.: Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. on Image Processing 1 (1992) 18–30CrossRefGoogle Scholar
  6. 6.
    Skarbek, W.: On convergence of affine fractal operators. Image Processing and Communications 1 (1995) 33–41Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Władysław Skarbek
    • 1
  1. 1.Department of Electronics and Information TechnologyWarsaw University of TechnologyWarsaw

Personalised recommendations