Evaluation of fuzzy quantified expressions

  • Anca L. Ralescu
  • Dan A. Ralescu
  • Kaoru Hirota
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1566)


We present a fuzzy logic based quantitative treatment for expressions containing quantifiers. For this we develop an evaluation procedure for the truth value of expressions of the form Qx∈X, p(x) where Qx∈X is a quantifier and p is a predicate defined on X. This procedure is consistent, in the sense that it can be applied uniformly regardless of the type (exact or imprecise) of the quantifier and/or predicate used.

Key words

Fuzzy quantifiers truth value fuzzy cardinality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bairwise and R. Cooper, Generalized quantifiers and natural language (1980), preprint.Google Scholar
  2. 2.
    D. Dubois and H. Prade, Fuzzy cardinality and the modeling of imprecise quantification, Fuzzy Sets Systems 16 (1985) 199–230MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. L. Ralescu, A note on rule representation in expert systems, Information Sciences 38 (1986) 193–203.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. L. Ralescu (with B. Bouchon-Meunier, D. A. Ralescu), Combining fuzzy quantifiers. Proceedings of the International Joint Conference of CFSA/IFIS/SOFT’95 on Fuzzy Theory and Applications, Taipei, Taiwan, Dec. 7–9, 1995.Google Scholar
  5. 5.
    A. L. Ralescu (with B. Bouchon-Meunier), Rules with fuzzy quantifiers and applications, Proceedings of the Third European Systems Science Congress, Rome, October 1–4, 1996.Google Scholar
  6. 6.
    D. A. Ralescu, Cardinality, quantifiers, and the aggregation of fuzzy criteria, Fuzzy sets and Systems, 69 (1995) 355–365.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. R. Yager, Connectives and quantifiers in fuzzy sets, Fuzzy Sets and Systems 40 (1991) 39–75.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Computers and mathematics, 9 (1983) 149–184.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Anca L. Ralescu
    • 1
  • Dan A. Ralescu
    • 2
  • Kaoru Hirota
    • 3
  1. 1.ECE&CS DepartmentUniversity of CincinnatiUSA
  2. 2.Mathematical Sciences DepartmentUniversity of CincinnatiUSA
  3. 3.Computational Intelligence and Systems Science DepartmentTokyo Institute of TechnologyJapan

Personalised recommendations