Representation by correspondence: An inadequate conception of knowledge for artificial systems

  • Robert L. Campbell
Philosophy of Artificial Intelligence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1502)


In the Artificial Intelligence community knowledge is normally viewed as structures in the mind (symbols, features, images, etc.) that correspond to structures in the environment. I argue that the standard view is inadequate and that it cannot aid in the construction of truly intelligent systems. Representations by correspondence require prior knowledge of the structure in the mind, the structure in the world, and of the correspondence between them. Unless some other kind of knowledge is already available to the system, it can have no knowledge by correspondence. Various derivatives of this fundamental problem are discussed, including the proliferation of correspondences; the need to posit an observer; the inability to account for error from the system’s point of view; and the radical incompatibility between representation by correspondence and evolutionary or developmental accounts of knowledge.

Key words

Knowledge representation foundations philosophy of mind features symbolic computation connectionism encodings atomism error evolution interactivism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristotle. (1941). De anima (On the soul) In R. McKeon (Ed.), The basic works of Aristotle (pp. 535–603). New York: Random House. (Original work published c. 325 BC.)Google Scholar
  2. Bickhard, M. H. (1980). Cognition, convention, and communication. New York: Praeger.Google Scholar
  3. Bickhard, M. H. (1993). Representational content in humans and machines. Journal of Experimental and Theoretical Artificial Intelligence, 5, 285–333.Google Scholar
  4. Bickhard, M. H. (1998). Genuine representation in artificial systems. (This session).Google Scholar
  5. Bickhard, M. H., & Campbell, R. L. (1996). Topologies of learning and development. New Ideas in Psychology, 14, 111–156.CrossRefGoogle Scholar
  6. Bickhard, M. H., & Terveen, L. (1995). Foundational issues in Artificial Intelligence and Cognitive Science: Impasse and solution. Amsterdam: North-Holland.Google Scholar
  7. Campbell, R. L. (1988). Overlooked skyhooks: Evolutionary epistemology without emergent knowledge. Metascience, 7.3.Google Scholar
  8. Campbell, R. L., & Bickhard, M. H. (1987). A deconstruction of Fodor’s anticonstructivism. Human Development, 30, 48–59.CrossRefGoogle Scholar
  9. Chomsky, N. (1988). Language and problems of knowledge: The Managua lectures. Cambridge, MA: MIT Press.Google Scholar
  10. Dartnall, T. (1998). Why (a kind of) AI can’t be done. (This session).Google Scholar
  11. Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
  12. Fodor, J. (1981). The present status of the innateness problem. In J. Fodor (Ed.), RePresentations (pp. 257–316). Cambridge, MA: MIT Press.Google Scholar
  13. Fodor, J. (1987). Psychosemantics. Cambridge, MA: MIT Press.Google Scholar
  14. Fodor, J. (1990). A theory of content and other essays. Cambridge, MA: MIT Press.Google Scholar
  15. Harnad, S. (1989). The symbol grounding problem. Physica D, 42, 335–346.CrossRefGoogle Scholar
  16. Locke, J. (1961). An essay concerning human understanding (J. W. Yolton, ed.). London: Dent. (Original work published 1690).Google Scholar
  17. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition. Dordrecht: Reidel.Google Scholar
  18. Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.CrossRefGoogle Scholar
  19. Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ: Erlbaum.Google Scholar
  20. Shanon, B. (1988). On the similarity of features. New Ideas in Psychology, 6, 307–321.CrossRefGoogle Scholar
  21. Smith, B. C. (1985). Prologue to reflection and semantics in a procedural language. In R. Brachman & H. Levesque (Ed.), Readings in knowledge representation. Los Altos, California: Morgan Kaufmann.Google Scholar
  22. Vera, A. H., & Simon, H. (1993a). Situated action: A symbolic interpretation. Cognitive Science, 17, 7–48.Google Scholar
  23. Vera, A. H., & Simon, H. (1993b). Situated action: Reply to William Clancey. Cognitive Science, 17, 117–133.CrossRefGoogle Scholar
  24. Wittgenstein, L. (1961). Tractatus logico-pholosophicus. London: Routledge & Kegan Paul. (Original work published 1922).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Robert L. Campbell
    • 1
  1. 1.Department of PsychologyClemson UniversityClemsonUSA

Personalised recommendations