Advertisement

A feasibility study in iterative compilation

  • Toru Kisuki
  • Peter M. W. Knijnenburg
  • Mike F. P. O'Boyle
  • François Bodin
  • Harry A. G. Wijshoff
III System Software
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1615)

Abstract

In this paper we investigate the feasibility of iterative compilation in program optimisation. This technique enables compilers to deliver efficient code by searching for the best sequence of optimisations. In embedded systems, long compilation time can be afforded since the application is an integral part of the shipped product. However, in practice search spaces may be extremely large. Our experimental results show that in the case of large transformation spaces, near optimal transformations can be found by visiting only a small fraction of the entire search space by using a simple search algorithm.

Key words

Compiler Optimisations Iterative Compilation Loop Tiling Loop Unrolling Embedded Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Aarts, M. Barreteau F. Bodin, P. Brinkhaus, Z. Chamski, H.-P., Charles, C. Eisenbeis, J. Gurd, J. Hoogerbrugge, P. Hu, W. Jalby, P.M.W. Knijnenburg, M.F.P. O'Boyle, E. Rohou., R. Sakellariou, H. Schepers, A. Seznec, E. Stöhr, M. Verhoeven, and H.A.G. Wijshoff. OCEANS: Optimizing compilers for embedded applications. In Proc. Euro-Par 97, volume 1300 of Lecture Notes in Computer Science, pages 1351–1356, 1997.Google Scholar
  2. 2.
    M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P. Charles, C. Eisenbeis J. Gurd, J. Hoogerbrugge, P. Hu, W. Jalby, P.M.W. Knijnenburg, M.F.P. O'Boyle, E. Rohou, R. Sakellariou, A. Seznec, A. Stöhr, M. Treffers, and H.A.G. Wijshoff. OCEANS: Optimizing compilers for embedded applications. In Proc. Euro-Par 98. volume 1470 of Lecture Notes in Computer Science, pages 1123–1130, 1998.Google Scholar
  3. 3.
    J. Bilmes, K. Asanović, C.W. Chim, and J. Demmel. Optimizing matrix multiply using PHiPAC: A portable, high-performance, ANSI C coding methodology. In Proc. ICS'97, pages 340–347, 1997.Google Scholar
  4. 4.
    F. Bodin, Z. Chamski, C. Eisenbeis, E. Rohou, and A. Seznec. GCDS: A compiler strategy for trading code size against performance in embedded applications. Technical Report 1153, IRISA, Rennes, 1997.Google Scholar
  5. 5.
    F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, and E. Rohou, Iterative compilation in a non-linear optimisation space. In Proc. Workshop on Profile and Feedback Directed Compilation, pages Bodin et al. 1–10, 1998. Organised in conjuction with PACT'98.Google Scholar
  6. 6.
    S. Coleman and K. McKinley. Tile size selection using cache organization and data layout. In Proc. Programming Language Design and Implementation, 1995.Google Scholar
  7. 7.
    A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Mathematical Society, 2(42):230–265, 1936.Google Scholar
  8. 8.
    R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. Available through http://www.netlib.org/atlas/1998.Google Scholar
  9. 9.
    M.E. Wolf, D.E. Maydan, and D.-K. Chen. Combining, loop transformations considering caches and scheduling. Int'l. J. of Parallel Programming, 26(4):479–503, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Toru Kisuki
    • 1
  • Peter M. W. Knijnenburg
    • 1
  • Mike F. P. O'Boyle
    • 2
  • François Bodin
    • 3
  • Harry A. G. Wijshoff
    • 1
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenthe Netherlands
  2. 2.Division of Informaticsthe University of EdinburghEdinburghUK
  3. 3.IRISA-INRIARennesFrance

Personalised recommendations