Advertisement

Manifolds of semi-positive curvature

  • Thomas Peternell
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1646)

Keywords

Vector Bundle Line Bundle Ample Line Bundle Projective Manifold Fano Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Au76] Aubin, T.: Equations de type Monge-Ampere sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1976)MathSciNetMATHGoogle Scholar
  2. [AW93] Andreatta, M.; Wisniewski, J.: A note on non-vanishing and applications. Duke Math. J. 72, 739–755 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. [Be55] Berger, M.: Sur les groupes d’holonomie des variétés a connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)MathSciNetMATHGoogle Scholar
  4. [Be83] Beauville, A.: Variétés kählériennes dont la premiere classe de Chern est nulle. J. Diff. Geom. 18, 755–782 (1983)MathSciNetMATHGoogle Scholar
  5. [Bl56] Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci, Ec. Norm. Sup. 73, 151–202 (1956)MathSciNetMATHGoogle Scholar
  6. [Bo53] Borel, A.: Sur la cohomologie des espaces fibrés principaux et de espaces homogenes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953).MathSciNetCrossRefMATHGoogle Scholar
  7. [Bo54] Borel, A.: Kählerian coset spaces of semi-simple Lie groups. Proc. Natl. Acad. Sci. USA 40, 1147–1151 (1954)MathSciNetCrossRefMATHGoogle Scholar
  8. [BO74] Barth, W., Oeljeklaus, E.: Über die Albanese-Abbildung einer fast-homogenen Kähler-Mannigfaltigkeit, Math. Ann. 211, 47–62 (1974)MathSciNetCrossRefMATHGoogle Scholar
  9. [BR62] Borel, A.; Remmert, R.: Über kompakte homogene Kählersche Mannigfaltigkeiten. Mathem. Ann. 145, 429–439 (1962)MathSciNetCrossRefMATHGoogle Scholar
  10. [Bt57] Bott, R.: Homogeneous vector bundles. Ann. math. 66, 203–248 (1957)MathSciNetCrossRefMATHGoogle Scholar
  11. [Ca85] Campana, F.: Réduction d’Albanese d’un morphisme propre et faiblement Kählérien Comp. Math., 54, 373–416 (1985)MathSciNetMATHGoogle Scholar
  12. [Ca92] Campana, F.: Connexité rationnelle des variétés de Fano. Ann. scient. Ec. Norm. Sup. 25, 539–545 (1992)MathSciNetGoogle Scholar
  13. [Ca93] Campana, F.: Fundamental group and positivity of cotangent bundles of compact Kähler manifolds. Preprint 1993Google Scholar
  14. [CP91] Campana, F.; Peternell, T.: Projective manifolds whose tangent bundles are numerically effective. Math. Ann. 289, 169–187 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. [CP93] Campana, F.; Peternell, T.: 4-folds with numerically effective tangent bundles. manus. math. 79, 225–238 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. [CS89] Cho, K.; Sato, E.: Smooth projective varieties dominated by G/P. Preprint 1989Google Scholar
  17. [CS93] Cho, K.; Sato, E.: Smooth projective varieties with the ample vector bundle ∧2 T x in any characteristic. Preprint 1993Google Scholar
  18. [De85] Demailly, J.P.: Champs magnétiques et inégalités de Morse pour la d"-cohomologie. Ann. Inst. Fourier 35, 185–229 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. [De88] Demailly, J.P.: Vanishing theorems for tensor powers of an ample vector bundle. Inv. math. 91, 203–220 (1988)MathSciNetCrossRefMATHGoogle Scholar
  20. [Dm80] Demazure, M.: Séminaire sur les singularités des surfaces. Lect. Notes in Math. 777, Springer 1980Google Scholar
  21. [DPS93] Demailly, J.P.; Peternell, T.; Schneider, M.: Kähler manifolds with numerically effective Ricci class, Comp. math. 89, 217–240 (1993)MathSciNetMATHGoogle Scholar
  22. [DPS94a] Demailly, J.P.; Peternell, T.; Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Alg. Geom. 3, 295–345 (1994)MathSciNetMATHGoogle Scholar
  23. [DPS94b] Demailly, J.P.; Peternell, T.; Schneider, M.: Compact Kähler manifolds with hermitian semi-positive anticanonical bundle. Preprint 1994Google Scholar
  24. [En93] Enoki, I.: Kawamata-Viehweg vanishing theorem for compact Kähler manifolds. In Einstein metrics and Yang-Mills connections (ed. T. Mabuchi, S. Mukai), 59–68, M. Dekker, 1993Google Scholar
  25. [FL83] Fulton, W.; Lazarsfeld, R.: Positive polynomials for ample vector bundles. Ann. Math. 118, 35–60 (1983)MathSciNetCrossRefMATHGoogle Scholar
  26. [Fj83] Fujita, T.: On polarized manifolds whose adjoint bundles is not semi-positive. Adv. Stud. Pure Math. 10, 167–178 (1987)Google Scholar
  27. [Fj90] Fujita, T.: On adjoint bundles of ample vector bundles. Proc. Complex Alg. Var, Bayereuth 1990; Lecture Notes in Math. 105–112. Springer 1991Google Scholar
  28. [Fj91] Fujita, T.: On Kodaira energy and adjoint reduction of polarized manifolds. manuscr. math. 76, 59–84 (1991)MathSciNetCrossRefMATHGoogle Scholar
  29. [Fu83] Fujiki, A.: On the structure of compact complex manifolds in C. Adv. Stud. Pure Math. 1, 231–302 (1983)MathSciNetMATHGoogle Scholar
  30. [GK67] Goldberg, S.; Kobayashi, S.: Holomorphic bisectional curvature. J. Diff. Geom. 1, 225–234 (1967)MathSciNetMATHGoogle Scholar
  31. [Go54] Goto, M.: On algebraic homogeneous spaces. Am. J. Math. 76, 811–818 (1954)MathSciNetCrossRefMATHGoogle Scholar
  32. [Gr66] Griffiths, Ph.: The extension problem in complex analysis, 2. Amer. J. Math. 88, 366–446 (1966)MathSciNetCrossRefMATHGoogle Scholar
  33. [Gr69] Griffiths, Ph.: Hermitian differential geometry, Chern classes and positive vector bundles. In: Global Analysis, Princeton Math. Series 29, 185–251 (1969)Google Scholar
  34. [Gr81] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. IHES 53, 53–78 (1981)MathSciNetCrossRefMATHGoogle Scholar
  35. [Gr91] Gromov, M.: Kähler hyperbolocity and L 2—Hodge theory. J. Diff. Geom. 33, 263–292 (1991)MathSciNetMATHGoogle Scholar
  36. [GS69] Griffiths, Ph.; Schmid, W.: Locally homogeneous complex manifolds. Acta Mathem. 123, 253–302 (1969)MathSciNetCrossRefMATHGoogle Scholar
  37. [Ha66] Hartshorne, R.: Ample vector bundles. Publ. IHES 29, 319–394 (1966)MathSciNetMATHGoogle Scholar
  38. [Ha77] Hartshorne, R.: Algebraic geometry. Springer 1977Google Scholar
  39. [He78] Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Academic Press 1978Google Scholar
  40. [Is77] Iskovskih, V.: Fano 3-folds 1,2. Math. USSR Izv. 11, 485–527 (1977); ibid. 12, 469–505 (1978)MathSciNetCrossRefGoogle Scholar
  41. [Is90] Iskovskih, V.: Double projection from a line on Fano threefolds of the first kind. USSR Sbornik 66, 265–284 (1990)CrossRefGoogle Scholar
  42. [KMM87] Kawamata Y.; Matsuda, K.; Matsuki, K.: Introduction to the minimal model problem. Adv. Stud. Pure Mat. 10, 283–360 (1987)MathSciNetMATHGoogle Scholar
  43. [KN63] Kobayashi, S.; Nomizu, N.: Foundations of differential geometry 1,2. Interscience, 1963, 1969Google Scholar
  44. [Ko73] Kobayashi, S.; Ochiai, T.: Characterisations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31–47 (1973)MathSciNetMATHGoogle Scholar
  45. [Ko87] Kobayashi, S.: Differential geometry of complex vector bundles. Princeton Univ. Press 1987Google Scholar
  46. [Ko92] Kollár, J.: Shafarevich maps and plurigenera of algebraic varieties. Inv. math. 113, 177–215 (1992)MathSciNetCrossRefMATHGoogle Scholar
  47. [oMiMo92] Kollár, J.; Miyaoka, Y.; Mori, S.: Rationally connected varieties. J. Alg. Geom. 1, 429–448 (1992)MathSciNetMATHGoogle Scholar
  48. [Kw91] Kawamata, Y.: Moderate degenerations of algebraic surfaces. Proc. Complex Alg. Var. Bayreuth 1990. Lecture Notes in Math. 1507, 113–132, Springer 1991Google Scholar
  49. [La84] Lazarsfeld, R.: Some applications of the theory of ample vector bundles. Lecture Notes in Math. 1092, 29–61. Springer 1984Google Scholar
  50. [MM81] Mori, S.; Mukai, S.: On Fano 3-folds with B 2≥2. Adv. Stud. Pure Math. 1, 101–129 (1981)MathSciNetMATHGoogle Scholar
  51. [Mk88] Mok, N.: The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Diff. Geom. 27, 179–214Google Scholar
  52. [MK89] Mok, N.: Metric rigidity theorems on hermitian locally symmetric manifolds. World Scientific 1989Google Scholar
  53. [Mo79] Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. 110, 593–606 (1979)MathSciNetCrossRefMATHGoogle Scholar
  54. [Mo88] Mori, S.: Flip theorem and the existence of minimal models for 3-folds. J. Amer. Math. Soc. 1, 117–253 (1988)MathSciNetMATHGoogle Scholar
  55. [MS77] Mori, S.; Sumihiro,: On Hartshorne’s conjecture. J. Math. Kyoto Univ. 18, 523–533 (1977)MathSciNetMATHGoogle Scholar
  56. [Mu81] Murre, J.: Classification of Fano threcfolds according to Fano and Iskovskih. Lecture Notes in Math. 497, 35–92 (1981)Google Scholar
  57. [Mu89] Mukai, S.: New classification of Fano threefolds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. USA 86, 3000–3002 (1989)MathSciNetCrossRefMATHGoogle Scholar
  58. [Pe90] Peternell, T.: A characterisation of P n by vector bundles. Math. Z. 205, 487–490 (1990)MathSciNetCrossRefMATHGoogle Scholar
  59. [Pe91] Peternell, T.: Ample vector bundles on Fano manifolds. Intl. J. Math. 2, 311–322 (1991)MathSciNetCrossRefMATHGoogle Scholar
  60. [PP95] Peternell, T.; Pöhlmann, T.: In preparation.Google Scholar
  61. [PS89] Paranjapé, K.H.; Srinivas, V.: Selfmaps of homogeneous spaces. Inv. math. 98, 425–444 (1989)CrossRefMATHGoogle Scholar
  62. [PSW92] Peternell, T.; Szurek, M.; Wisniewski, J.: Fano manifolds and vector bundles. Mathem. Ann. 294, 151–165 (1992)MathSciNetCrossRefMATHGoogle Scholar
  63. [SY80] Siu, Y.T.; Yau, S.T.: Compact Kähler manifolds with positive bisectional curvature. Inv. math. 59, 189–204 (1980)MathSciNetCrossRefMATHGoogle Scholar
  64. [Ue75] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math. 439. Springer 1975Google Scholar
  65. [UY86] Uhlenbeck, K.; Yau, S.T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure and Appl. Math. 39, 258–293 (1986)MathSciNetCrossRefMATHGoogle Scholar
  66. [Ti72] Tits, J.: Free subgroups in linear groups. J. of Alg. 20, 250–270 (1972)MathSciNetCrossRefMATHGoogle Scholar
  67. [Wi91] Wisniewski, J.: On contractions of extremal rays on Fano manifolds. Crelles’s J. 417, 141–157 (1991)MathSciNetMATHGoogle Scholar
  68. [Y77] Yau, S.T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1789–1799 (1977)CrossRefGoogle Scholar
  69. [Y78] Yau, S.T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampere equation. Comm. Pure and Appl. Math. 31, 339–411 (1978)MathSciNetCrossRefMATHGoogle Scholar
  70. [YZ90] Ye, A.; Zhang, Q.: On ample vector bundles whose adjoint bundles are not numerically effective. Duke Math. J. 60, 671–687 (1990)MathSciNetCrossRefMATHGoogle Scholar
  71. [Zh90] Zheng, F.: On semi-positive threefolds. Thesis, Harvard 1990Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Thomas Peternell
    • 1
  1. 1.Math. InstitutBayreuthGermany

Personalised recommendations