Torsion points on J0(N) and Galois representations

  • Kenneth A. Ribet
Part of the Lecture Notes in Mathematics book series (LNM, volume 1716)


Suppose that N is a prime number greater than 19 and that P is a point on the modular curve X0(N) whose image in Jo(N) (under the standard embedding ι: X0(N)→J0(N)) has finite order. In [2], Coleman-Kaskel-Ribet conjecture that either P is a hyperelliptic branch point of X0(N) (so that N∈{23,29,31,41,47,59,71}) or else that ι(P) lies in the cuspidal subgroup C of J0(N). That article suggests a strategy for the proof: assuming that P is not a hyperelliptic branch point of X0(N), one should show for each prime number ℓ that the ℓ-primary part of ι(P) lies in C. In [2], the strategy is implemented under a variety of hypotheses but little is proved for the primes ℓ=2 and ℓ=3. Here I prove the desired statement for ℓ=2 whenever N is prime to the discriminant of the ring End J0(N). This supplementary hypothesis, while annoying, seems to be a mild one; according to W.A. Stein of Berkeley, California, in the range N<5021, it is false only in case N=389.


Exact Sequence Prime Number Galois Group Finite Order Galois Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Boston, H. W. Lenstra, Jr., and K. A. Ribet, Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 323–328.MathSciNetzbMATHGoogle Scholar
  2. [2]
    R. Coleman, B. Kaskel, and K. Ribet, Torsion points on X 0 (N), Contemporary Math. (to appear).Google Scholar
  3. [3]
    J. A. Csirik, The Galois structure of J 0 (N)[I] (to appear).Google Scholar
  4. [4]
    P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math., vol. 349, Springer-Verlag, Berlin and New York, 1973, pp. 143–316.zbMATHGoogle Scholar
  5. [5]
    E. De Shalit, A note on the Shimura subgroup of J 0 (p), Journal of Number Theory 46 (1994), 100–107.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Grothendieck, SGA 7 I, Exposé IX, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972, pp. 313–523.Google Scholar
  7. [7]
    B. Kaskel, The adelic representation associated to X 0(37), Ph. D. thesis, UC Berkeley, May, 1996.Google Scholar
  8. [8]
    S. Lang and H. Trotter, Frobenius distributions in GL2-extensions, Lecture Notes in Math., vol. 504, Springer-Verlag, Berlin and New York, 1976.zbMATHGoogle Scholar
  9. [9]
    B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33–186.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Ogg, Automorphismes de courbes modulaires, Sém. Delange-Pisot-Poitou (1974/1975, exposé 7).Google Scholar
  13. [13]
    M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207–233.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. A. Ribet, On modular representations of Open image in new window arising from modular forms, Invent. Math. 100 (1990), 431–476.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. A. Ribet, Report on mod ℓ representations of Open image in new window, Proceedings of Symposia in Pure Mathematics 55 (2) (1994), 639–676.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. A. Ribet, Images of semistable Galois representations, Pacific Journal of Math. 81 (1997), 277–297.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.MathSciNetCrossRefGoogle Scholar
  18. [18]
    J.-P. Serre, Sur les représentations modulaires de degré 2 de Open image in new window, Duke Math. J. 54 (1987), 179–230.MathSciNetCrossRefGoogle Scholar
  19. [19]
    G. Shimura, A reciprocity law in non-solvable extensions, Journal für die reine und angewandte Mathematik 221 (1966), 209–220.MathSciNetzbMATHGoogle Scholar
  20. [20]
    J. Tate, The non-existence of certain Galois extensions of Q unramified outside 2, Contemporary Mathematics 174 (1994), 153–156.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., vol. 83 (second edition), Springer-Verlag, Berlin-Heidelberg-New York, 1997.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Kenneth A. Ribet
    • 1
  1. 1.University of CaliforniaBerkeley

Personalised recommendations