Advertisement

Generating modules efficiently over noncommutative rings

  • J. T. Stafford
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 924)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] H. Bass, K-theory and stable structure, Publ. Math. I.H.E.S. 22 (1964), 5–60.MathSciNetCrossRefGoogle Scholar
  2. [EE] D. Eisenbud and E.G. Evans, Jr., Generating modules efficiently: theorems from algebraic K-theory, J. Algebra 27 (1973), 278–305.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [FH] F.T. Farrell and W.C. Hsiang, A formula for K1Rα[t], Proc. Symp. Pure Math. 17 (1970), 192–208.MathSciNetCrossRefGoogle Scholar
  4. [F] O. Forster, Über die Anzahl der Erzeugenden eines ideals in einem Noetherschen Ring, Math. Z. 84 (1964), 80–87.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [GR] R. Gordon and J.C. Robson, Krull dimension, Mem. Amer. Math. Soc., 133 (1973).Google Scholar
  6. [Q] D. Quillen, Higher algebraic K-theory I, in Algebraic K-theory I: Higher K-theories, Lecture Notes in Math., No 341, Springer-Verlag, Berlin/New York, 1973.Google Scholar
  7. [RG] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, C.R. Acad. Sci. Paris Sér. A 265 (1967), 712–715.MathSciNetzbMATHGoogle Scholar
  8. [Sm] P.F. Smith, On the dimension of group rings, Proc. London Math. Soc., 25 (1972), 288–302; Corrigendum, ibid, P. F. Smith, On the dimension of group rings, Proc. London Math. Soc., 27 (1973), 766–768.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [St1] J.T. Stafford, Stable structure of noncommutative Noetherian rings, J. Algebra 47 (1977), 244–267.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [St2] J.T. Stafford, Stable structure of noncommutative Noetherian rings, II, J. Algebra 52 (1978), 218–235.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [St3] J.T. Stafford, Generating modules efficiently: algebraic K-theory for noncommutative Noetherian rings, J. Algebra 69 (1981), 312–346.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Sw1] R.G. Swan, The number of generators of a module, Math. Z. 102 (1967); 318–322.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Sw2] R.G. Swan, Algebraic K-theory, Lecture Notes in Math., No 76, Springer-Verlag, Berlin/New York, 1968.CrossRefzbMATHGoogle Scholar
  14. [V] L.N. Vaseršteîn, On the stabilisation of the general linear group over a ring, Math USSR-Sb. 8 (1969), 383–400.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [W] R.B. Warfield, Jr., The number of generators of a module over a fully bounded ring, J. Algebra 66 (1980), 425–447.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. T. Stafford
    • 1
  1. 1.Gonville and Caius CollegeCambridge

Personalised recommendations