Aldous D. (1983) Random walks on finite groups and rapidly mixing Markov chains. In Séminaire de Probabilités, XVII, LNM 986, Springer, Berlin.
Google Scholar
Aldous D. (1987) On the Markov-chain simulation method for uniform combinatorial simulation and simulated annealing. Prob. Eng. Info. Sci., 1, 33–46.
CrossRef
MATH
Google Scholar
Aldous D. and Fill J. (1996) Preliminary version of a book on finite Markov chains available via homepage http://www.stat. berkeley.edu/users/aldous
Google Scholar
Aldous D. and Diaconis P. (1987) Strong uniform times and finite random walks. Adv. Appl. Math. 8, 69–97.
MathSciNet
CrossRef
MATH
Google Scholar
Alon N. (1986) Eigenvalues and expanders. Combinatorica 6, p. 83–96.
MathSciNet
CrossRef
MATH
Google Scholar
Alon N. and Milman V. (1985) λ1, isoperimetric inequalities for graphs and superconcentrators. J. Comb. Th. B, 38, 78–88.
MathSciNet
MATH
Google Scholar
Bakry D. and Emery M. (1985) Diffusions hypercontractive. Séminaire de probabilité XIX, Springer LNM 1123, 179–206.
MathSciNet
MATH
Google Scholar
Bakry D. (1994) L’hypercontractivité et son utilisation en théorie des semigroups. In Ecole d’été de Saint Flour 1992, Springer LNM 1581.
Google Scholar
Bakry D., Coulhon T., Ledoux M., Saloff-Coste L. (1995) Sobolev inequalities in disguise. Indian Univ. Math. J., 44, 1043–1074.
MathSciNet
CrossRef
MATH
Google Scholar
Bonami A. (1970) Étude des coefficients de Fourier des fonctions de L
p
(G). Ann. Inst. Fourier, 20, 335–402.
MathSciNet
CrossRef
MATH
Google Scholar
Carlen E., Kusuoka S. and Stroock D. (1987) Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré, Prob. Stat. 23, 245–287.
MathSciNet
MATH
Google Scholar
Cheeger J. (1970) A lower bound for the smallest eigenvalue of the Laplacian. Problems in Analysis, Synposium in Honor of S. Bochner. Princeton University Press. 195–199.
Google Scholar
Chung F. and Yau S-T. (1994) A harnack inequality for homogeneous graphs and subgraphs. Communication in Analysis and Geometry, 2, 627–640.
MathSciNet
CrossRef
MATH
Google Scholar
Chung F. and Yau S-T. (1995) Eigenvalues of graphs and Sobolev inequalities. Combinatorics, Probability and Computing, 4, 11–25.
MathSciNet
CrossRef
MATH
Google Scholar
Davies E.B. (1989) Heat kernels and spectral theory. Cambridge University Press.
Google Scholar
Deuschel J-D. and Stroock D. (1989) Large deviations. Academic Press, Boston.
MATH
Google Scholar
Diaconis P. (1986) Group representations in probability and statistics. IMS, Hayward.
MATH
Google Scholar
Diaconis P. (1996) The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA, 93, 1659–1664.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Fill J. (1990) Strong stationary times via a new form of duality. Ann. Prob. 18, 1483–1522.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P., Graham R. and Morrison J. (1990) Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures and Algorithms, 1, 51–72.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Gangolli A. (1995) Rectangular arrays with fixed margins. In Discrete Probability and Algorithms, (Aldous et al, ed.) 15–41. The IMA volumes in Mathematics and its Applications, Vol. 72, Springer-Verlag.
Google Scholar
Diaconis P. and Holmes S. (1995) Three Examples of Monte-Carlo Markov Chains: at the Interface between Statistical Computing, Computer Science and Statistical Mechanics. In Discrete Probability and Algorithms, (Aldous et al, ed.) 43–56. The IMA volumes in Mathematics and its Applications, Vol. 72, Springer-Verlag.
Google Scholar
Diaconis P. and Saloff-Coste L. (1993) Comparison theorems for reversible Markov chains. Ann. Appl. Prob. 3, 696–730.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1993) Comparison techniques for random walk on finite groups. Ann. Prob. 21, 2131–2156.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1994) Moderate growth and random walk on finite groups. G.A.F.A., 4, 1–36.
MathSciNet
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1995) An application of Harnack inequalities to random walk on nilpotent quotients, J. Fourier Anal. Appl., Kahane special issue, 187–207.
Google Scholar
Diaconis P. and Saloff-Coste L. (1995) Random walks on finite groups: a survey of analytical techniques. In Probability on groups and related structures XI, H. Heyer (ed), World Scientific.
Google Scholar
Diaconis P. and Saloff-Coste L. (1996) Nash inequalities for finite Markov chains., J. Th. Prob. 9, 459–510.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1996) Logarithmic Sobolev inequalities and finite Markov chains. Ann. Appl. Prob. 6, 695–750.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1995) Walks on generating sets of Abelian groups. Prob. Th. Rel. Fields. 105, 393–421.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Saloff-Coste L. (1995) What do we know about the Metropolis algorithm. J.C.S.S. To appear.
Google Scholar
Diaconis D. and Shahshahani M. (1981) Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Geb., 57, 159–179.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Sahshahani M. (1987) The subgroup algorithm for generating uniform random variables. Probl. in Engin. Info. Sci., 1, 15–32.
CrossRef
MATH
Google Scholar
Diaconis P. and Shahshahani M. (1987) Time to reach statinarity in the Bernoulli-Laplace diffusion model. SIAM Jour Math. Anal., 18, 208–218.
MathSciNet
CrossRef
MATH
Google Scholar
Diaconis P. and Stroock D. (1991) Geometric bounds for eigenvalues for Markov chains. Ann. Appl. Prob. 1, 36–61.
MathSciNet
CrossRef
MATH
Google Scholar
Dinwoodie I. H. (1995) A probability inequality for the occupation measure of a reversible Markov chain. Ann. Appl. Prob., 5, 37–43.
MathSciNet
CrossRef
MATH
Google Scholar
Dinwoodie I. H. (1995) Probability inequalities for the occupation measure of a Markov chain.
Google Scholar
Dyer M., Frieze A., Kannan R., Kapoor A., Perkovic L., and Vazirani U. (1993) A mildly exponential time algorithm for approximating the number of solutions to a multidimensional knapsack problem. Combinatorics, Probability and Computing, 2, 271–284.
MathSciNet
CrossRef
MATH
Google Scholar
Dyer M. and Frieze A. (1991) Computing the volume of convex bodies: a case where randomness provably helps. Probabilistic Combinatorics and its applications, Proceedings of the AMS Symposia in Applied Mathematics 44, 123–170.
MathSciNet
CrossRef
MATH
Google Scholar
Feller W. (1968) An introduction to probability theory and its applications. Vol. I, third edition, John Wiley & Sons, New-York.
MATH
Google Scholar
Fill J. (1991) Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with application to the exclusion process. Ann. Appl. Probab., 1, 62–87.
MathSciNet
CrossRef
MATH
Google Scholar
Flatto L., Odlyzko A. and Wales D. (1985) Random shuffles and group representations. Ann. Prob. 13, 151–178.
MathSciNet
CrossRef
MATH
Google Scholar
Frieze A., Kannan R. and Polson N. (1994) Sampling from log concave distributions. Ann. Appl. Prob. 4, 812–837.
MathSciNet
CrossRef
MATH
Google Scholar
Gillman D. (1993) Hidden Markov chains: rates of convergences and the complexity of inference. Ph.D. thesis, Massachusets Institute of Technology, Department of mathematics.
Google Scholar
Gluck D. (1996) Random walk and character ratios on finite groups of Lie type. Adv. Math.
Google Scholar
Gross L. (1976) Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083.
MathSciNet
CrossRef
MATH
Google Scholar
Gross L. (1993) Logarithmic Sobolev inequalities and contractivity properties of semigroups. In Lecture Notes in Math. 1563. Springer.
Google Scholar
Higuchi Y. and Yoshida N. (1995) Analytic conditions and phase transition for Ising models. Lecture notes in Japanese.
Google Scholar
Hildebrand M. (1992) Genrating random elements in SL
n
(F
q
) by random transvections. J. Alg. Combinatorics, 1, 133–150.
MathSciNet
CrossRef
Google Scholar
Holley R. and Stroock D. (1987) Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46, 1159–1194.
MathSciNet
CrossRef
MATH
Google Scholar
Horn R. and Johnson Ch. (1985) Matrix analysis. Cambridge University Press.
Google Scholar
Horn R and Johnson Ch. (1991) Topics in Matrix analysis. Cambridge University Press.
Google Scholar
Jerrum M. and Sinclair A. (1993) Polynomial time approximation algorithms for the Ising model, SIAM Journal of Computing, 22, 1087–1116.
MathSciNet
CrossRef
MATH
Google Scholar
Jerrum M. and Sinclair A. (1997) The Markov chain Monte Carlo method: an approach to approximate counting and integration. In Approximation algorithms for NP-hard problems, D.S. Hochbaum (Ed.), PWS Publishing, Boston.
Google Scholar
Kahale N. (1995) A semidefinite bound for mixing rates of Markov chains. To appear in Random Structures and Algorithms.
Google Scholar
Kannan R. (1994) Markov chains and polynomial time algorithms. Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, Computer Society Press, 656–671.
Google Scholar
Kemeny J. and Snell L. (1960) Finite Markov chains. Van Nostrand company, Princeton.
MATH
Google Scholar
Lawler G. and Sokal A. (1988) Bounds on the L
2
spectrum for Markov chains and Markov processes: a generalization of Cheeger inequality. Trans. AMS, 309, 557–580.
MathSciNet
MATH
Google Scholar
Lezaud P. (1996) Chernoff-type bound for finite Markov chains. Ph.D. Thesis in progress, Université Paul Sabatier, Toulouse.
MATH
Google Scholar
Lovász L. and Simonovits M. (1993). Random walks in a convex body and an improved volume algorithms. Random Structures and Algorithms, 4, 359–412.
MathSciNet
CrossRef
MATH
Google Scholar
Mann B. (1996) Berry-Essen central limit theorems for Markov chains. Ph.D. Thesis, Harvard University, Department of Mathematics.
Google Scholar
Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E. (1953) Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.
CrossRef
Google Scholar
Miclo L. (1996) Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies To appear in Séminaire de Probabilité XXXI. Lecture notes in Math. Springer.
Google Scholar
Nash J. (1958) Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954.
MathSciNet
CrossRef
MATH
Google Scholar
Rothaus O. (1980) Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators. J. Funct. Anal., 39, 42–56.
MathSciNet
CrossRef
MATH
Google Scholar
Rothaus O. (1981) Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal., 42, 110–120.
MathSciNet
CrossRef
MATH
Google Scholar
Rothaus O. (1981) Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal., 42, 102–109.
MathSciNet
CrossRef
MATH
Google Scholar
Rothaus O. (1985) Analytic inequalities, Isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 64, 296–313.
MathSciNet
CrossRef
MATH
Google Scholar
Saloff-Coste L. (1996) Simple examples of the use Nash inequalities for finite Markov chains. In Semstat III, Current Trends in Stochastic Geometry and its Applications. W.S. Kendall, O.E. Barndorff-Nielsen and MC. van Lieshout, Eds. Chapman & Hall.
Google Scholar
Senata E. (1981) Non negative matrices and Markov chains (2nd ed.) Springer.
Google Scholar
Sinclair A. (1992) Improved bounds for mixing rates of Markov chains and multicommodity flow. Combinatorics, Probability and Computing, 1, 351–370.
MathSciNet
CrossRef
MATH
Google Scholar
Sinclair A. (1993) Algorithms for random generation and counting: a Markov chain approach. Birkhäuser, Boston.
CrossRef
MATH
Google Scholar
Stein E. and Weiss G. (1971) Introduction to Fourier analysis in Euclidean spaces. Princeton Univ. Press, Princeton.
MATH
Google Scholar
Stong R. (1995) Random walks on the groups of upper triangular matrices Ann. Prob., 23, 1939–1949.
MathSciNet
CrossRef
MATH
Google Scholar
Stong R. (1995) Eigenvalues of the natural random walk on the Burnside group B(3, n). Ann. Prob., 23, 1950–1960.
MathSciNet
CrossRef
MATH
Google Scholar
Stong R. (1995) Eigenvalues of random walks on groups. Ann. Prob., 23, 1961–1981.
MathSciNet
CrossRef
MATH
Google Scholar
Swendsen R. H. and Wang J-S. (1987) Nonuniversal critical dynamics in Monte-Carlo simulations, Physical review letters, 58, 86–88.
CrossRef
Google Scholar
Varopoulos N. (1985) Semigroupes d’opérateurs sur les espaces L
p. C. R. Acad. Sc. Paris. 301, Série I, 865–868.
MathSciNet
MATH
Google Scholar
Varopoulos N. (1985) Théorie du potentiel sur les groupes et les variétés. C. R. Acad. Sc. Paris. 302, Série I, 203–205.
MathSciNet
Google Scholar