The boundary of a torsion-free hyperbolic group as a semi-Markovian space

  • Michel Coornaert
  • Athanase Papadopoulos
Part of the Lecture Notes in Mathematics book series (LNM, volume 1539)


Identity Element Cayley Graph Finite Subset Distinct Vertex Hyperbolic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter 7

  1. [Can]
    J. Cannon, “The combinatorial structure of co-compact discrete hyperbolic groups”, Geometriae Dedicata, 16, (1984), pp. 123–148.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Cas]
    J. W. S. Cassels, “An embedding theorem for fields”, Bull. Australian Math. Soc. 14, (1976), pp. 193–198 and 479–480.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [CDP]
    M. Coornaert, T. Delzant, A. Papadopoulos, “Geométrie et théorie des groupes: Les Groupes hyperboliquers de Gromov”, Lecture Notes in Mathematics, vol. 1441, Springer Verlag, 1990.Google Scholar
  4. [Gro 1]
    M. Gromov, “Hyperbolic manifolds, groups and actions”, Ann. of Math. Studies 97, Princeton university Press (1982), pp. 183–215.MathSciNetGoogle Scholar
  5. [Gro 3]
    , “Hyperbolic groups”, in Essays in Group Theory, MSRI publ. 8, Springer, 1987, pp. 75–263.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Sel]
    A. Selberg, “On discontinuous groups in higher dimensional spaces”, in “Contributions to Function Theory”, Bombay 1960, pp. 147–164.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michel Coornaert
  • Athanase Papadopoulos

There are no affiliations available

Personalised recommendations