Symbolic dynamics

  • Michel Coornaert
  • Athanase Papadopoulos
Part of the Lecture Notes in Mathematics book series (LNM, volume 1539)


Finite Type Topological Entropy Transition Graph Expansive System Symbolic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter 2

  1. [BL]
    R. Bowen et O. E. Lanford, “Zeta functions of restrictions of the shift transformation”, Proc. Symp. Pure Math., vol 14 AMS, 1970, p. 907–918.MathSciNetzbMATHGoogle Scholar
  2. [Bow]
    R. Bowen, “On Axiom A diffeomorphisms”, Regional Conference Series in Mathematics, AMS, 1978.Google Scholar
  3. [Bro]
    J. R. Brown, “Ergodic theory and topological dynamics”, Academic Press, 1976.Google Scholar
  4. [CP]
    E. M. Coven, M. E. Paul, “Sofic systems”, Israel J. of Math. 20, 1975, pp. 165–177.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [DGS]
    M. Denker, C. Grillenberger et K. Sigmund, “Ergodic theory on compact spaces”, Lecture Notes in Mathematics, 66–67, S.M.F. (1979).Google Scholar
  6. [FLP]
    A. Fathi, F. Laudenbach and V. Poénaru, “Travaux de thurston sur les surfaces”, Astérisque, vol. 527, Springer Verlag.Google Scholar
  7. [Fis]
    R. Fischer, “Sofic systems and graphs”, Monatsh. Math. 80, 1975, pp. 179–186.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Fri]
    D. Fried, “Finitely presented dynamical systems,” Erg. th. & Dyn. Syst. 7, 1987, pp. 489–507.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Gro 1]
    M. Gromov, “Hyperbolic manifolds, groups and actions”, Ann. of Math. Studies 97, Princeton University Press, 1982, pp. 183–215.MathSciNetGoogle Scholar
  10. [Gro 3]
    , “Hyperbolic groups”, in Essays in Group Theory, MSRI publ. 8, Springer, 1987, pp. 75–263.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Had]
    J. Hadamard, “Les surfaces à courbures opposées et leurs lignes géodésiques”, J. de Math. pures et appl. 4, 1898, pp. 27–74.zbMATHGoogle Scholar
  12. [Hed]
    G. A. Hedlund, “Endomorphisms and automorphisms of the shift dynamical system”, Math. Syst. Theory 3, 1969, pp. 320–375.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [HW]
    W. Hurewicz, H. Wallman, “Dimension theory”, Princeton University Press, 1948.Google Scholar
  14. [Kur]
    K. Kuratowski, “Introduction to set theory and topology”, 2nd edition, Pergamon Press, 1972.Google Scholar
  15. [Man]
    A. Manning, “Axiom A diffeomorphisms have rational zeta functions”, Bull. Lon. Math. Soc. 3, 1971, pp. 215–220.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Moi]
    E.E. Moise, “Geometry and topology in dimensions 2 and 3”, Springer Verlag, 1977.Google Scholar
  17. [Sma]
    S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73, 1967, pp. 747–817.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Wei]
    B. Weiss, “Subshifts of finite type and sofic systems”, Monatsh. Math. 77, 1973, pp. 462–474.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Wal]
    P. Walters, “Ergodic theory — Introductory lectures”, Lecture Notes in Mathematics, vol. 458, Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michel Coornaert
  • Athanase Papadopoulos

There are no affiliations available

Personalised recommendations