A quick review of Gromov hyperbolic spaces

  • Michel Coornaert
  • Athanase Papadopoulos
Part of the Lecture Notes in Mathematics book series (LNM, volume 1539)


Hyperbolic Space Cayley Graph Hyperbolic Group Geodesic Segment Real Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for Chapter 1

  1. [Bow]
    B. Bowditch, “Notes on Gromov's hyperbolicity criterion for path-metric spaces”, in Group Theory from a geometrical viewpoint, ICTP, World Scientific, 1991, pp. 64–167.Google Scholar
  2. [CDP]
    M. Coornaert, T. Delzant and A. Papadopoulos, “Geométrie et théorie des groupes: Les groupes hyperboliques de Gromov”, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, 1990.Google Scholar
  3. [E]
    D. B. A. Epstein (with J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston), “Word processing and groups”, Jones and Barnett Publishers, 1992.Google Scholar
  4. [GH]
    E. Ghys, P. de la Harpe (ed), “Sur les groupes hyperboliques d'après Mikhaël Gromov”, Progress in Mathematics, vol. 83, Birkhäuser, 1990.Google Scholar
  5. [Ghy]
    E. Ghys, “Les groupes hyperboliques”, Seminaire N. Bourbaki, exposé No. 772, mars 1990. Astérisque 189–190, SMF, 1990.Google Scholar
  6. [GLP]
    M. Gromov, “Structures métriques pour les variétes riemanniennes”, notes written by J. Lafontaine and P. Pansu, Fernand Nathan, Paris, 1981.Google Scholar
  7. [Gro 1]
    , “Hyperbolic manifolds, groups and actions”, in Riemann surfaces and related topics, Ann. of Math. studies 97, Princeton University Press, 1980, pp. 183–213.MathSciNetGoogle Scholar
  8. [Gro 2]
    —, “Infinite groups as geometric objects”, Proc. ICM Warszawa, 1983, pp. 385–392.Google Scholar
  9. [Gro 3]
    , “Hyperbolic groups”, in Essays in group theory, MSRI publ. 8, Springer Verlag, 1987, pp. 75–263.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Sho]
    H. Short (ed.), “Notes on word hyperbolic groups”, in Group Theory from a geometrical viewpoint, ICTP, World Scientific, 1991, pp. 3–63.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michel Coornaert
  • Athanase Papadopoulos

There are no affiliations available

Personalised recommendations